Passing Memories by Reference

One question that may arise when using Calyx as a backend is how to pass a memory "by reference" between components. In C++, this might look like:

#include <array>
#include <cstdint>

// Adds one to the first element in `v`.
void add_one(std::array<uint32_t, 1>& v) {
  v[0] = v[0] + 1;
}

int main() {
  std::array<uint32_t, 1> x = { 0 };
  add_one(x); // The value at x[0] is now 1.
}

In the code above, we've constructed an "l-value reference" to the array, which essentially means we can both read and write from x in the function add_one.

Now, let's allow similar functionality at the Calyx IR level. We define a new component named add_one which represents the function above. However, we also need to include the correct ports to both read and write to x:

Read from xWrite to x
read_datadone
address portswrite_data
write_en
address ports

Since we're both reading and writing from x, we'll include the union of the columns above:

component add_one(x_done: 1, x_read_data: 32) ->
                 (x_write_data: 32, x_write_en: 1, x_addr0: 1) {

One tricky thing to note is where the ports belong, i.e. should it be an input port or an output port of the component? The way to reason about this is to ask whether we want to receive signal from or send signal to the given wire. For example, with read_data, we will always be receiving signal from it, so it should be an input port. Conversely, address ports are used to mark where in memory we want to access, so those are used as output ports.

We then simply use the given ports to both read and write to the memory passed by reference. Note that we've split up the read and write to memory x in separate groups, to ensure we can schedule them sequentially in the execution flow. We're also using the exposed ports of the memory through the component interface rather than, say, x.write_data.

    group read_from_x {
      x_addr0 = 1'd0;            // Set address port to zero.
      tmp_reg.in = x_read_data;  // Read the value at address zero.
      tmp_reg.write_en = 1'd1;
      read_from_x[done] = tmp_reg.done;
    }
    group write_to_x {
      x_addr0 = 1'd0;            // Set address port to zero.
      add.left = one.out;
      add.right = tmp_reg.out;   // Saved value from previous read.

      x_write_data = add.out;    // Write value to address zero.
      x_write_en = 1'd1;         // Set write enable signal to high.

      write_to_x[done] = x_done; // The group is done when the write is complete.
    }

Bringing everything back together, the add_one component is written accordingly:

component add_one(x_done: 1, x_read_data: 32) ->
                 (x_write_data: 32, x_write_en: 1, x_addr0: 1) {
  cells {
    one = std_const(32, 1);
    add = std_add(32);
    tmp_reg = std_reg(32);
  }
  wires {
    group read_from_x {
      x_addr0 = 1'd0;            // Set address port to zero.
      tmp_reg.in = x_read_data;  // Read the value at address zero.
      tmp_reg.write_en = 1'd1;
      read_from_x[done] = tmp_reg.done;
    }
    group write_to_x {
      x_addr0 = 1'd0;            // Set address port to zero.
      add.left = one.out;
      add.right = tmp_reg.out;   // Saved value from previous read.

      x_write_data = add.out;    // Write value to address zero.
      x_write_en = 1'd1;         // Set write enable signal to high.

      write_to_x[done] = x_done; // The group is done when the write is complete.
    }
  }
  control {
    seq { read_from_x; write_to_x; }
  }
}

The final step is creating a main component from which the original component will be invoked. In this step, it is important to hook up the proper wires in the call to invoke to the corresponding memory you'd like to read and/or write to:

  control {
    invoke add_one0(x_done = x.done, x_read_data = x.read_data)
                   (x_write_data = x.write_data, x_write_en = x.write_en, x_addr0 = x.addr0);
  }

This gives us the main component:

component main() -> () {
  cells {
    add_one0 = add_one();
    @external(1) x = std_mem_d1(32, 1, 1);
  }
  wires {
  }
  control {
    invoke add_one0(x_done = x.done, x_read_data = x.read_data)
                   (x_write_data = x.write_data, x_write_en = x.write_en, x_addr0 = x.addr0);
  }
}

To see this example simulated, run the command:

fud e examples/futil/memory-by-reference/memory-by-reference.futil --to dat \
-s verilog.data examples/futil/memory-by-reference/memory-by-reference.futil.data

Multi-dimensional Memories

Not much changes for multi-dimensional arrays. The only additional step is adding the corresponding address ports. For example, a 2-dimensional memory will require address ports addr0 and addr1. More generally, an N-dimensional memory will require address ports addr0, ..., addr(N-1).

Multiple Memories

Similarly, multiple memories will just require the ports to be passed for each of the given memories. Here is an example of a memory copy (referred to as mem_cpy in the C language), with 1-dimensional memories of size 5:

import "primitives/std.lib";
component copy(dest_done: 1, src_read_data: 32, length: 3) ->
              (dest_write_data: 32, dest_write_en: 1, dest_addr0: 3, src_addr0: 3) {
  cells {
    lt = std_lt(3);
    N = std_reg(3);
    add = std_add(3);
  }
  wires {
    comb group cond {
      lt.left = N.out;
      lt.right = length;
    }
    group upd_index<"static"=1> {
      add.left = N.out;
      add.right = 3'd1;
      N.in = add.out;
      N.write_en = 1'd1;
      upd_index[done] = N.done;
    }
    group copy_index_N<"static"=1> {
      src_addr0 = N.out;
      dest_addr0 = N.out;
      dest_write_en = 1'd1;
      dest_write_data = src_read_data;
      copy_index_N[done] = dest_done;
    }
  }
  control {
    while lt.out with cond {
      seq {
        copy_index_N;
        upd_index;
      }
    }
  }
}

component main() -> () {
  cells {
    @external(1) d = std_mem_d1(32,5,3);
    @external(1) s = std_mem_d1(32,5,3);
    length = std_const(3, 5);
    copy0 = copy();
  }
  wires {
  }
  control {
    seq {
      invoke copy0(dest_done=d.done, src_read_data=s.read_data, length=length.out)
                  (dest_write_data=d.write_data, dest_write_en=d.write_en, dest_addr0=d.addr0, src_addr0=s.addr0);
    }
  }
}