Meta-level issues in Offloading: Scoping, Composition,
Development, and their Automation

André DeHon, Hans Giesen, Nik Sultana, Yuanlong Xiao
University of Pennsylvania

ABSTRACT

This paper argues for an accelerator development toolchain that
takes into account the whole system containing the accelerator.
With whole-system visibility, the toolchain can better assist ac-
celerator scoping and composition in the context of the expected
workloads and intended performance objectives. Despite being
focused on the ‘meta-level’ of accelerators, this would build on
existing and ongoing DSLs and toolchains for accelerator design.
Basing this on our experience in programmable networking and
reconfigurable-hardware programming, we propose an integrative
approach that relies on three activities: (i) generalizing the focus
of acceleration to offloading to accommodate a broader variety of
non-functional needs—such as security and power use—while using
similar implementation approaches, (ii) discovering what to offload,
and to what hardware, through semi-automated analysis of a whole
system that might compose different offload choices that change
over time, (iii) connecting with research and state-of-the-art ap-
proaches for using domain-specific languages (DSLs) and high-level
synthesis (HLS) systems for custom offload development. We out-
line how this integration can drive new development tooling that
accepts models of programs and resources to assist system designers
through design-space exploration for the accelerated system.

1 THINKING OUTSIDE THE ACCELERATOR

Accelerators are typically well-defined, specialized subsystems
whose usefulness depends on their contribution to a larger system.
The usefulness of accelerators depends on considerations outside
them—considerations at the level of the whole system and beyond,
such as workload characteristics and system evolution, which can
influence the extent to which a particular accelerator candidate
satisfies the system needs.

A development environment for accelerators would be thus in-
complete if it did not integrate design considerations that are ex-
ternal to the accelerator. The purpose of this paper is to explore
some of these issues encountered when designing such an environ-
ment based on our experience in programmable networking and
reconfigurable-hardware programming.

We start by observing the benign generalization of accelera-
tion to offloading. Offload development uses similar techniques and
tools as accelerator development but includes a broader set of re-
quirements and objectives—such as reducing cost through reuse,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

LATTE 21, April 15, 2021, Virtual, Earth

© 2021 Copyright held by the owner/author(s).

truct § { [...] };
err f (struct S+ sData);
# (A) Legacy hardware.
g (struct S# sData) { _
%;;53‘3 ) (B) Existing accelerator
[ . .| ' J implementation.
r
" : ] s Gt LA ¢ 1 (C) Under-development
x-—”n;\‘sData.‘; subsystem.

[...]

Figure 1: Even if originating from the same codebase, differ-
ent subsystems might be intended or eligible for mapping to
different types of hardware.

reducing heat dissipation with specialized operators, reducing sen-
sitive data exposure using specialized security hardware to safely
store keys, and all of the above.

Next we focus on three meta-level issues that influence the use-
fulness of offload deployment. (i) Scoping involves finding parts
of a system that would benefit from offloading. This involves an-
alyzing the system to identify subsystems and characterizing the
non-functional dependencies between them—e.g., performance or
security implications. For example, if the goal of offloading is ac-
celeration, then we need to derive time-characteristics of the ac-
celerator. Alternatively, the goal might be to conserve SRAM on
a precious resource, trading it for cheaper memory at the cost of
time overhead.

As done in Flightplan [8], a single system might offload different
subsystems to different hardware to obtain non-functional bene-
fits such as acceleration. A system might use a range of different
implementation languages and their toolchains, but for simplicity
Fig. 1 shows a single, C-like language to describe functionality that
is (A) offloaded to third-party hardware with a well-understood be-
havior, (B) offloaded to hardware implementations whose behavior
we can change, (C) potentially offloaded to in-development hard-
ware whose behavior is still being defined—scoping helps define
the characteristics of that implementation and its behavior.

(ii) Composition assembles offloads into the system, such as (A-
C) in Fig. 1. In our work we reason about compositions through
models that capture subsystem profiles across heterogeneous hard-
ware (§2.1), but it is an open question how to model different kinds
of targets and how to structure models to reduce the complex-
ity of reasoning about them. In our work, composition is inferred
when control-flow crosses an annoted boundary in the code. In
general the system and its offloaded subsystems can use a diverse
mix of input languages and toolchains, including domain-specific
approaches such as Dandelion [6] for LINQ queries or Emu [7] for



LATTE ’21, April 15, 2021, Virtual, Earth

packet processing. Accommodating this diversity requires reason-
ing about dependencies within a system and across subsystems to
relate resource budgets with input workloads and output expecta-
tions.

(iii) Development supports exploring the design space now, feed-
ing back into scoping and composition choices, and planning for
the future as the system evolves. For example, this could explore
the use of different targets for (A-C) to minimize both cost for the
operator and end-to-end latency for end-users of a system. This
involves understanding the sensitivity to input workloads based on
model analysis or implementation profiling, for example, to under-
stand scaling behavior. In our work we explored this in the context
of planning (offload selection and provisioning) (§2.1).

Having introduced meta-level considerations, we say more on
how these derive from our past work (§2) and sketch how they play
arole in a cross-community research vision (§3).

2 TWO SETTINGS THAT USE OFFLOADING

2.1 Programmable networking

In our work on Flightplan [8] we offloaded fragments of P4 [1]
packet processors to heterogeneous hardware. Fragments can in-
voke complex external logic such as link-layer Forward Error Cor-
rection [4]. For scoping, the programmer annotates the program
and Flightplan explores all coarsenings of those code segments.
It also helps reason about composition by capturing context to
resume a computation on a different target. To help with devel-
opment, it uses a planner that ingests program abstractions, in-
formation about the network and its hardware, and the operator’s
objectives, to produce a series of mappings to hardware as well as
a performance, resources costs, and overhead forecast.

2.2 Reconfigurable hardware

In our work for reconfigurable hardware, we offload computational
kernels to specialized, spatial operators to increase throughput and
decrease latency. In this work the system is written in C and com-
poses subprograms interconnected using streams [2, 3]. During
development the designer progressively defines new subsystem
implementations; these implementations are functionally equiva-
lent, and earlier implementations are used to validate later imple-
mentations. This process feeds back to scoping.

3 VISION FOR OFFLOAD DEVELOPMENT

Developing frameworks that assist with both decomposition and
refinement has value to designers and operators, but important
open questions remain. We focus on two that we grappled with in
our work: what models capture adequate information to automate
reasoning about composition and hardware target selection (§3.2),
and how could an offload development environment help with
design-exploration involving meta-level issues such as scoping and
composition (§3.1).

3.1 Models

Flightplan (§2.1) uses a program model to describe control- and
data-flow, and delineate subsystem scopes. But it does not handle
language features that exceed P4’s expressiveness, such as those

DeHon, et al.
Implementation choices
< I —— - -
82 (1 Vv v ﬂ:::-.-
(O] ———
: \3\ Workloads
X
5 \
g ®
7 * 1A T)v \
. E @ Goals
13
£z ANV
3
7]
1 2
A ) Metrics

Figure 2: Outline of an accelerator development framework.

for asynchrony and concurrency that other programmable targets
support. Being able to reason about these effects would increase
the automation scope to more complex logic and hardware targets.

Flightplan also uses a resource model that captures features in-
cluding latency, throughput, energy, and cost. But further work
is needed on improve on this to: (i) accurately model sub-unit
resources, such as FPGA resources and cores on a chip multiproces-
sor (CMP), and (ii) explore the trade-off of accuracy and tractability
in cross-scale reasoning. For example when reasoning about con-
gestion or concurrency on buses, reductionist modeling leads to a
state-space explosion.

3.2 Exploration framework

Offload exploration is tedious and error-prone if done manually.
Flightplan offers a proof-of-concept automation for exploration, but
further generalization is needed. This includes exploring the spec-
trum between testbed experiments, simulations, and mathematical
modeling to increase reasoning speed. Flightplan relies on testbed
experiments to sample resource usage, but while these samples are
high-fidelity, they take time and human effort to acquire. There is
a need for tools to automate the characterization of resources and
mappings, to lower the time and effort needed.

We envisage a workload-guided feedback process to identify
offload candidates. Fig. 2 provides a sketch of such a system, based
on our experience designing Flightplan. The design helps with
scoping subsystems, such as the @ green and @ pink candidates, and
reasoning about the @ interfaces across intermediate subsystems.

An important design goal involves comparing alternative map-
pings to @ different hardware types, and ® different implemen-
tations on the same hardware. For flexibility, this process should
work with different types of artefacts, including black-box imple-
mentations and abstract specifications of their execution profile.

Finally, ® an evaluation process explores different compositions
based on both quantitative and propositional reasoning. A search
strategy (e.g, [5]) is used to spare designers and operators from time-
consuming trial-and-error. This could be integrated with vendor
toolchains to obtain feedback from proprietary quantifications of
resource use on ASICs or reconfigurable hardware. Parts of this
process could be seen as a “provisioning, allocation, scheduling,
placement and routing” at a larger scale and involving coarser units
of computation. Flightplan provides a starting point for such a
system [8, §7.2.2] that we hope to generalize for more hardware
targets and environments beyond programmable networking.



Meta-level issues in Offloading: Scoping, Composition, Development, and their Automation

ACKNOWLEDGMENTS

We thank the reviewers for their feedback. This material is based
upon work supported by the Defense Advanced Research Projects
Agency (DARPA) under Contract No. HR0011-19-C-0106. Any opin-
ions, findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect
the views of DARPA.

REFERENCES

[1] PatBosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rexford,
Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and David Walker.
2014. P4: Programming Protocol-Independent Packet Processors. SIGCOMM
Comput. Commun. Rev. 44, 3 (July 2014), 87-95. https://doi.org/10.1145/2656877.
2656890

Michael Butts, Anthony Mark Jones, and Paul Wasson. 2007. A Structural Object
Programming Model, Architecture, Chip and Tools for Reconfigurable Computing.
In Proceedings of the IEEE Symposium on Field-Programmable Custom Computing
Machines. 55-64.

André DeHon, Yury Markovsky, Eylon Caspi, Michael Chu, Randy Huang,
Stylianos Perissakis, Laura Pozzi, Joseph Yeh, and John Wawrzynek. 2006. Stream
Computations Organized for Reconfigurable Execution. Journal of Microproces-
sors and Microsystems 30, 6 (September 2006), 334-354. http://ic.ese.upenn.edu/
abstracts/score_jmm2006.html

=

(3

LATTE ’21, April 15, 2021, Virtual, Earth

Hans Giesen, Lei Shi, John Sonchack, Anirudh Chelluri, Nishanth Prabhu, Nik
Sultana, Latha A. Kant, Anthony J. McAuley, Alexander Poylisher, André DeHon,
and Boon Thau Loo. 2018. In-network computing to the rescue of faulty links.
In Proceedings of the 2018 Morning Workshop on In-Network Computing, NetCom-
pute@SIGCOMM 2018, Budapest, Hungary, August 20, 2018, Xin Jin and Changhoon
Kim (Eds.). ACM, 1-6. https://doi.org/10.1145/3229591.3229595

Atefeh Mehrabi, Aninda Manocha, Benjamin C. Lee, and Daniel J. Sorin. 2021.
Bayesian Optimization for Efficient Accelerator Synthesis. ACM Trans. Archit.
Code Optim. 18, 1, Article 4 (Dec. 2021), 25 pages. https://doi.org/10.1145/3427377
Christopher J. Rossbach, Yuan Yu, Jon Currey, Jean-Philippe Martin, and Dennis
Fetterly. 2013. Dandelion: A Compiler and Runtime for Heterogeneous Systems. In
Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles
(SOSP °13). Association for Computing Machinery, New York, NY, USA, 49-68.
https://doi.org/10.1145/2517349.2522715

Nik Sultana, Salvator Galea, David Greaves, Marcin Wojcik, Jonny Shipton,
Richard G. Clegg, Luo Mai, Pietro Bressana, Robert Soulé, Richard Mortier, Paolo
Costa, Peter R. Pietzuch, Jon Crowcroft, Andrew W. Moore, and Noa Zilberman.
2017. Emu: Rapid Prototyping of Networking Services. In 2017 USENIX Annual
Technical Conference, USENIX ATC 2017, Santa Clara, CA, USA, July 12-14, 2017,
Dilma Da Silva and Bryan Ford (Eds.). USENIX Association, 459-471. https:
//www.usenix.org/conference/atc17/technical- sessions/presentation/sultana

Nik Sultana, John Sonchack, Hans Giesen, Isaac Pedisich, Zhaoyang Han, Nishanth
Shyamkumar, Shivani Burad, André DeHon, and Boon Thau Loo. 2021. Flight-
plan: Dataplane Disaggregation and Placement for P4 Programs. In 18th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 21). USENIX
Association. https://www.usenix.org/conference/nsdi21/presentation/sultana


https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/2656877.2656890
http://ic.ese.upenn.edu/abstracts/score_jmm2006.html
http://ic.ese.upenn.edu/abstracts/score_jmm2006.html
https://doi.org/10.1145/3229591.3229595
https://doi.org/10.1145/3427377
https://doi.org/10.1145/2517349.2522715
https://www.usenix.org/conference/atc17/technical-sessions/presentation/sultana
https://www.usenix.org/conference/atc17/technical-sessions/presentation/sultana
https://www.usenix.org/conference/nsdi21/presentation/sultana

	Abstract
	1 Thinking outside the accelerator
	2 Two settings that use offloading
	2.1 Programmable networking
	2.2 Reconfigurable hardware

	3 Vision for offload development
	3.1 Models
	3.2 Exploration framework

	Acknowledgments
	References

