
Building Beyond HLS: Graph Analysis and Others
Pedro Filipe Silva

Faculty of Engineering, University of
Porto

Porto, Portugal
pedro.filipe.silva@fe.up.pt

João Bispo
INESC-TEC and Faculty of

Engineering, University of Porto
Porto, Portugal
jbispo@fe.up.pt

Nuno Paulino
INESC-TEC and Faculty of

Engineering, University of Porto
Porto, Portugal

nuno.m.paulino@inesctec.pt

ABSTRACT
High-Level Synthesis has introduced reconfigurable logic to a new
world – that of software development. The newest wave of HLS
tools has been successful, and the future looks bright. But is HLS
the end-all-be-all to FPGA acceleration? Is it enough to allow non-
experts to program FPGAs successfully, even when dealing with
troublesome data structures and complex control flows – such as
those often encountered in graph algorithms? We take a look at the
panorama of adoption of HLS by the software community, focusing
on graph analysis in particular in order to generalise to FPGA-
unfriendly problems. We argue for the existence of shortcomings in
current HLS development flows which hinder adoption, and present
our perspective on the path forward, including how these issues
may be remedied via higher-level tooling.

1 INTRODUCTION
The High-Level Synthesis (HLS) approach to FPGA hardware syn-
thesis has quite a storied past. From the 1970s-80s, generations of
HLS (or behavioural synthesis, as it was once known) have come
and gone [11] – but the current one has shown staying power. Cur-
rent HLS tools have reached new heights in academic development,
sophistication, and commercial success [13].

As a result, these tools are now marketed to pure software devel-
opers: by many accounts, HLS is ready to break into the software
world [9, 10]. The opposing viewpoint persists, however: that im-
plementing FPGA accelerators with current HLS tools still requires
significant hardware development knowledge.

We present a somewhat more nuanced viewpoint: Assuming the
existence of higher-level tools such as libraries, it is perfectly possible
for a pure software engineer to implement an FPGA accelerator.
Take a relatively mature product such as the the Vitis Vision Library
[18] – browsing through examples shows the software abstraction
mostly holds tight (if one does not descend to the internals). But this
begs a question: what happens when there are no viable high-level
tools?

2 WHAT’S MISSING? (A “CASE STUDY” ON
GRAPH ANALYSIS)

Graphs are a common sight in a myriad of scientific and engineering
problems and models (e.g., traffic navigation, electrical network

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
LATTE ’21, April 15, 2021, Virtual, Earth
© 2021 Copyright held by the owner/author(s).

Table 1: FPGA Graph Analytic Work

Type Number NPDU Problems

HLS 4 N/A BFS*3, SpMV*2

HLS
Framework

3 0 CCent, PR*2, BFS*2, SpMV*3, SSSP*2, WCC*2,
MST, VC

RTL 15 N/A PR, BFS*8, SSSP*3, APSP, MM, GC

RTL
Framework

12 7 PR*7, BFS*7, SpMV*2, SSSP*4, WCC*5, CC,
MST, TRW-S, CNN, VC

analysis) [8], making research on graph algorithms – and their
acceleration – very active. Notably, graph analysis tends to be both
slow and very common in performance-sensitive applications (as
is traffic navigation), meaning acceleration is all the more relevant.

FPGA graph accelerators are notoriously difficult. Low global
memory bandwidths and low amounts of fast local memory do not
mesh with the high memory dependence (often including random
access requirements) of graph analytic algorithms. As a result, the
combination remains somewhat unexplored [2].

Table 1 shows work on FPGA graph algorithms from 2010 on-
ward, grouped by type12. Note that we define framework as a work
aiming to provide a high-level generalised tool able to solve several
distinct problems, rather than focusing on a specific problem (e.g.,
shortest path computation).

Register-Transfer Level (RTL) work overwhelms HLS work in
number of occurrences. This may indicate that HLS is not yet con-
sidered fit for the task, or that RTL development methods, versus
HLS, still carry significant momentum in the FPGA community.
However, recent literature exists arguing that HLS is indeed ready
(with some caveats) [9], and some novel HLS work claims better
results when compared to RTL frameworks [4], so we tend towards
the latter option.

An analysis of the works compiled in Table 1 brings us to the
following observations:

Patterns. In general, most works on FPGA graph acceleration
possess at least one of the following attributes:

(1) Tackling a single problem.
(2) Not having available/runnable code.
(3) Being either RTL-based or unclear about implementation.

The Limits of RTL. When analysing non-HLS literature in par-
ticular, a key takeaway is that the majority of works does focus on
a single problem, and this tends to be a variation of the shortest-
path problem. Are pure RTL designs are hitting an abstraction limit,
where other kinds of computations are very difficult to model? Note
1Results for the RTL line were sourced from [2], and only cover up to the year 2019.
2NPDU means “number of works which poorly define programmer usability” – we
reference this below.



LATTE ’21, April 15, 2021, Virtual, Earth Pedro Filipe Silva, João Bispo, and Nuno Paulino

that several frameworks, especially RTL ones, fail to clearly define
how a programmer might use them. This may indicate that usage
of such frameworks still requires very specialised knowledge.

A Hard Problem. Much of the literature (including HLS work)
is written mostly from a hardware engineer’s perspective. This
is likely indicative of the special status of graph analysis in the
FPGA world: it is an FPGA-unfriendly3 problem, still requiring a
fair amount of hardware knowledge (and time investment) to tackle,
even with HLS. Due to this, adoption of software paradigms, as
has occurred in other areas, is slowed. We base our argument for
higher-level tooling in this fact.

Symptoms. All factors appear to be symptoms of a problem: RTL
cannot fully tackle graph analysis, and HLS isn’t quite there yet.

3 WHY ARE SOFTWARE DEVELOPERS
INTERESTED IN FPGAS?

The answer is, of course, HLS [5, 10]. But why are they interested
in using FPGA boards and expansion cards?

The Good. In the HPC community, factors of interest in FPGA
technology include:

(1) Potential time or energy efficiency increase [3, 10, 12, 16].
(2) Interest in or perceived architectural advantages vs. tradi-

tional processing systems [3, 10].
(3) Interest in reconfigurable heterogeneous computing systems

[12, 16].

The Bad. Conversely, referenced issues include:
(1) Difficulty in implementation [3] vs. GPU systems [12].
(2) Lack of portability between FPGA vendors [16].
(3) Optimisation challenges [16].
(4) Reduced quality-of-results, in some instances, vs. RTL tools

[9].

The Lovely. However, a fact stands out: all issues could benefit
from higher-level tooling. Raising the level of abstraction is, as his-
tory shows, the most direct method of resolving issues 1 and 2. As
for issues 3 and 4, modern optimising compilers give a hint: in many,
or most, scenarios, programming in a high level (systems) language
results in more efficient program code – an effect more visible the
more complex the application or target hardware become, which is
precisely where we are now heading with FPGA acceleration.

4 DISCUSSION AND CONCLUSION
The time is right for redoubling research into FPGA acceleration,
especially in new libraries, abstractions, and toolsets. FPGA usage
is increasing, and recent technologies, such as High-Bandwidth
Memory (HBM), may come to increase popularity even further.

The state of the art in FPGA graph acceleration is also shifting:
where single-issue, low-level, RTL implementations dominated,
now appear high-level frameworks, and, most interestingly, HLS-
based frameworks (we ourselves are evaluating such a framework
[4] to implement graph centrality metrics for traffic navigation).

3Less amenable to implementation than, for instance, streaming-type algorithms. Note
that we do not argue that efficient implementation is impossible or nonviable; only
that it is harder.

We have used graph analysis to generalise to unfriendly ap-
plications, but some of the issues we’ve raised may very well be
applicable to all domains of FPGA acceleration. The remainder this
section may be read in either light.

4.1 Parallels
Abstraction is a key feature of hardware [6] and software [17]
engineering alike. Increased abstraction levels are a necessity as
system complexity increases. Not unlike the progression, in soft-
ware engineering, from machine code to assembly to high-level
languages4, hardware synthesis has evolved from manual design to
logic synthesis, and, more recently, high-level synthesis. Could the
two parallel paths actually converge at a distant point to a perfectly
agnostic behavioural description language?

In 2009, Martin and Smith [11] divided the history of HLS into
three distinct generations, with an upcoming fourth hinging on
conquering control flow. This has been done (to what degree, how-
ever, is debatable). So will the fifth generation focus on raising
the abstraction level further, perhaps via higher-level tooling, to
conquer unfriendly applications?

4.2 So, What’s Missing?
The way forward for FPGAs goes through HLS – this is a reoccur-
ring sentiment [9, 10, 14]. In fact, RTL may be hitting an abstraction
wall. Perhaps it will come to be viewed as the equivalent of assembly
for hardware design [9]. But research cannot stop at pure HLS.

While HLS has come to significantly raise the abstraction level5,
this is not sufficient for unfriendly problems such as graph analysis:
hardware knowledge remains a necessity in these instances [1, 4,
15]. Thus, we raise the following questions:

• Are FPGA HLS accelerators currently competitive for graph
analysis, or will they become competitive in the near future?
If so, how?

• Are HLS libraries and toolsets for FPGA acceleration, espe-
cially in unfriendly applications, mature enough for use in
production? If not, when will they be?

• How will increasing support for HBM affect the adoption
of FPGAs as graph accelerators for unfriendly applications
such as graph analysis?

• What other promising technologies (such as multi-FPGA
systems, overlays, dynamic partial reconfiguration, or run-
time binary translation) have the potential to increase said
adoption?

• What impact will these technologies have on the potential
of FPGAs as general-purpose hardware accelerators?

We argue that the continued development and promotion of
tools such as frameworks and libraries is necessary in order to move
the burden of specialised knowledge away from the domain expert.
As such, we hold that the future of FPGA acceleration, especially
in remnant markets, will heavily depend not only on advances in
compiler technology, but also on investment into high-level tooling.

4Although an argument could be made that C presents a faulty/leaky abstraction, due
to its closeness to the underlying hardware [7, 17]. Perhaps perfect abstractions are
unattainable, or even undesirable?
5Also not without fault – as a review of any highly optimised pure HLS quickly
indicates (we reference this in Section 1).



Building Beyond HLS: Graph Analysis and Others LATTE ’21, April 15, 2021, Virtual, Earth

REFERENCES
[1] Dario Baptista, Leonel Sousa, and Fernando Morgado-Dias. 2020. Raising the

Abstraction Level of a Deep Learning Design on FPGAs. IEEE Access 8 (2020),
205148–205161. https://doi.org/10.1109/ACCESS.2020.3036975

[2] Maciej Besta, Dimitri Stanojevic, Johannes De Fine Licht, Tal Ben-Nun, and
Torsten Hoefler. 2019. Graph Processing on FPGAs: Taxonomy, Survey, Chal-
lenges. arXiv:1903.06697 [cs] (April 2019). arXiv:1903.06697 [cs]

[3] Nick Brown. 2020. Weighing Up the New Kid on the Block: Impressions of Using
Vitis for HPC Software Development. In 2020 30th International Conference on
Field-Programmable Logic and Applications (FPL). IEEE, Gothenburg, Sweden,
335–340. https://doi.org/10.1109/FPL50879.2020.00062

[4] Xinyu Chen, Hongshi Tan, Yao Chen, Bingsheng He, Weng-Fai Wong, and Dem-
ing Chen. 2021. ThunderGP: HLS-Based Graph Processing Framework on FPGAs.
In The 2021 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays. ACM, Virtual Event USA, 69–80. https://doi.org/10.1145/3431920.3439290

[5] Jason Cong, Bin Liu, Stephen Neuendorffer, Juanjo Noguera, Kees Vissers, and
Zhiru Zhang. 2011. High-Level Synthesis for FPGAs: From Prototyping to De-
ployment. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 30, 4 (April 2011), 473–491. https://doi.org/10.1109/TCAD.2011.2110592

[6] P. Coussy, D.D. Gajski, M. Meredith, and A. Takach. 2009. An Introduction to
High-Level Synthesis. IEEE Design & Test of Computers 26, 4 (July 2009), 8–17.
https://doi.org/10.1109/MDT.2009.69

[7] S.A. Edwards. 2006. The Challenges of Synthesizing Hardware from C-Like
Languages. IEEE Design & Test of Computers 23, 5 (May 2006), 375–386. https:
//doi.org/10.1109/MDT.2006.134

[8] L. R Foulds. 1992. Graph Theory Applications. Springer New York, New York.
[9] Sakari Lahti, Panu Sjovall, Jarno Vanne, and Timo D. Hamalainen. 2019. Are

We There Yet? A Study on the State of High-Level Synthesis. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 38, 5 (May 2019),
898–911. https://doi.org/10.1109/TCAD.2018.2834439

[10] Joshua Lant, Javier Navaridas, Mikel Lujan, and John Goodacre. 2020. Toward
FPGA-Based HPC: Advancing Interconnect Technologies. IEEE Micro 40, 1 (Jan.
2020), 25–34. https://doi.org/10.1109/MM.2019.2950655

[11] G. Martin and G. Smith. 2009. High-Level Synthesis: Past, Present, and Future.
IEEE Design & Test of Computers 26, 4 (July 2009), 18–25. https://doi.org/10.1109/
MDT.2009.83

[12] Fahad Bin Muslim, Liang Ma, Mehdi Roozmeh, and Luciano Lavagno. 2017.
Efficient FPGA Implementation of OpenCL High-Performance Computing Ap-
plications via High-Level Synthesis. IEEE Access 5 (2017), 2747–2762. https:
//doi.org/10.1109/ACCESS.2017.2671881

[13] Razvan Nane, Vlad-Mihai Sima, Christian Pilato, Jongsok Choi, Blair Fort, Andrew
Canis, Yu Ting Chen, Hsuan Hsiao, Stephen Brown, Fabrizio Ferrandi, Jason
Anderson, and Koen Bertels. 2016. A Survey and Evaluation of FPGA High-
Level Synthesis Tools. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 35, 10 (Oct. 2016), 1591–1604. https://doi.org/10.1109/TCAD.
2015.2513673

[14] Maxime Pelcat, Cedric Bourrasset, Luca Maggiani, and Francois Berry. 2016.
Design Productivity of a High Level Synthesis Compiler versus HDL. In 2016
International Conference on Embedded Computer Systems: Architectures, Modeling
and Simulation (SAMOS). IEEE, Agios Konstantinos, Samos Island, Greece, 140–
147. https://doi.org/10.1109/SAMOS.2016.7818341

[15] Nik Sultana, Salvator Galea, David Greaves, Marcin Wojcik, Jonny Shipton,
Richard Clegg, Luo Mai, Pietro Bressana, Robert Soulé, Richard Mortier, Paolo
Costa, Peter Pietzuch, Jon Crowcroft, Andrew W Moore, and Noa Zilberman.
2017. Emu: Rapid Prototyping of Networking Services. In 2017 USENIX Annual
Technical Conference (USENIX ATC 17). USENIX Association, Santa Clara, CA,
459–471.

[16] Dennis Weller, Fabian Oboril, Dimitar Lukarski, Juergen Becker, and Mehdi
Tahoori. 2017. Energy Efficient Scientific Computing on FPGAs Using OpenCL.
In Proceedings of the 2017 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays. ACM, Monterey California USA, 247–256. https:
//doi.org/10.1145/3020078.3021730

[17] Niklaus Wirth. 2008. A Brief History of Software Engineering. IEEE Annals of the
History of Computing 30, 3 (July 2008), 32–39. https://doi.org/10.1109/MAHC.
2008.33

[18] Xilinx. 2021. Vitis Vision Library.

https://doi.org/10.1109/ACCESS.2020.3036975
https://arxiv.org/abs/1903.06697
https://doi.org/10.1109/FPL50879.2020.00062
https://doi.org/10.1145/3431920.3439290
https://doi.org/10.1109/TCAD.2011.2110592
https://doi.org/10.1109/MDT.2009.69
https://doi.org/10.1109/MDT.2006.134
https://doi.org/10.1109/MDT.2006.134
https://doi.org/10.1109/TCAD.2018.2834439
https://doi.org/10.1109/MM.2019.2950655
https://doi.org/10.1109/MDT.2009.83
https://doi.org/10.1109/MDT.2009.83
https://doi.org/10.1109/ACCESS.2017.2671881
https://doi.org/10.1109/ACCESS.2017.2671881
https://doi.org/10.1109/TCAD.2015.2513673
https://doi.org/10.1109/TCAD.2015.2513673
https://doi.org/10.1109/SAMOS.2016.7818341
https://doi.org/10.1145/3020078.3021730
https://doi.org/10.1145/3020078.3021730
https://doi.org/10.1109/MAHC.2008.33
https://doi.org/10.1109/MAHC.2008.33

	Abstract
	1 Introduction
	2 What's Missing? (A ``Case Study'' on Graph Analysis)
	3 Why are Software Developers Interested in FPGAs?
	4 Discussion and Conclusion
	4.1 Parallels
	4.2 So, What's Missing?

	References

