
Compile-Time RTL Interpreters
Sahand Kashani

EPFL
Switzerland

James R. Larus
EPFL

Switzerland

ABSTRACT
There is no doubt that high-level synthesis (HLS) tools have greatly
eased accelerator development. However, many accelerators have
already been written in a RTL language and cannot benefit from
the automated techniques commonly used by HLS tools. Pipelining
is one such technique and must painstakingly be performed by a
human when a RTL accelerator needs to be migrated to a higher-
speed FPGA for example. This paper provides a first step to bringing
HLS-like automated pipelining directly to accelerators written in a
RTL language.

1 INTRODUCTION
Pipelining is the main mechanism for creating high-frequency ac-
celerators. All designs—written directly in a RTL language or gen-
erated through HLS—exhibit some form of pipelined structure to
achieve their performance goals. HLS tools, in particular, are es-
pecially good at generating highly-pipelined accelerators and are
the subject of most research in techniques for accelerator design
today [1, 2, 4]. However, HLS only applies to new code and does
not help improve the design of existing accelerators written in RTL
languages. These pre-existing RTL accelerators must currently be
modified manually if increased performance is required.

To say RTL design is tedious is an understatement:
(1) RTL languages are verbose and even small design changes

that look simple on paper may require modifying hundreds
of lines of code [5].

(2) RTL design requires hardware expertise to handle concerns
such as explicit clocking, concurrent execution, scheduling,
and timing issues (to name a few).

(3) The RTL design process is based on a compile-edit cycle that
involves reading textual reports generated by a CAD tool to
identify the performance-limiting region of a circuit and act
on the design accordingly.

Manually pipelining a RTL design is therefore long and error-
prone. This work attempts to answer the question of how one can
automatically pipeline existing RTL designs by eliminating the
human-in-the-loop in point 3 to help open up a path for future
CAD optimizations beyond what is currently possible.

2 LIMITATIONS OF THE STATE OF THE ART
Pipelining has been studied extensively and can in theory be per-
formed automatically, but CAD tools cannot do this in user RTL
without annotations. The reason is that RTL languages explicitly
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
LATTE ’21, April 15, 2021, Virtual, Earth
© 2021 Copyright held by the owner/author(s).

encode the precise timing and physical structure of a circuit. Com-
pilers must preserve the semantics of their input programs, but
pipelining changes the input-to-output latency of a circuit and thus
its original timing.

Retiming is a transparent transformation that decreases a cir-
cuit’s clock period by moving existing registers around to balance
delays. Current FPGA toolchains perform retiming under the hood,
but its applicability highly depends on the structure of the input
circuit. For example, Intel’s HyperFlex FPGA architecture has first-
class support for retiming by including bypassable registers on
every routing segment of the device to help balance long routing
paths. However, these special registers do not support asynchro-
nous resets, clock enables, or initial values. Design registers which
use such features can therefore not be retimed to a routing segment
register to decrease the clock period.

Intel’s CAD tool tries to help designers pipeline their designs
to reach performance goals by using a post-route analysis wizard
to virtually modify performance-limiting paths, measure the incre-
mental benefit of the modification, and report suggestions back to
the designer. However, the timing-driven nature of such analyses
is only concerned with design performance, not functionality. The
suggestions guide designers to regions of the RTL design that re-
quire more pipelining, but do not point to the paths that will need
more registers to maintain data synchronization and functional
correctness. Similarly, no timing-driven analysis can tell a designer
if less pipelining is enough to achieve their clock period targets, for
example.

3 KEY INSIGHT
If we truly want to eliminate the human-in-the-loop, CAD tools
need to know the properties of communication interfaces to de-
termine boundaries at which they are free to manipulate circuits.
Fortunately hardware accelerators are not arbitrary circuits and
often interact with other components through elastic interfaces. In
fact, FPGA toolchains automatically perform datapath pipelining of
an elastic interface when they are in charge of generating it, but not
within user code behind the same interface to preserve the RTL’s
precise timing semantics (c.f. Figure 1).

A special case exists when a all a design’s interfaces are elastic
as the whole design becomes latency-insensitive (though it may
internally have structures where relative timing matters). The key
insight is that accelerators often satisfy this property and their
behavior thus only depends on the order of events that occur at
their interfaces, and not on the precise timing at which they arrive.
Such accelerators can be represented by an algorithm and no longer
require the cycle-level modeling of a RTL language to be described.
We propose leveraging this fact to lift the gate-level representation
of user RTL to a higher-level that captures the essence of what
the RTL code is trying to do without modeling the precise timing
between which different functional units receive their data. This



LATTE ’21, April 15, 2021, Virtual, Earth Sahand Kashani and James R. Larus

SRCSNK SNKSRC

Can pipeline because generated

Cannot pipeline because RTL

Figure 1: CAD tools can pipeline across elastic interfaces
they generate, notwithin user RTLwith the same interfaces.

higher-level representation can then be used to reason about how
to restructure, pipeline, and schedule the circuit to achieve better
performance.

4 OUR APPROACH
Our goal is to pipeline a RTL circuit towards a given target clock
period (or to the best extent possible if the requested clock period
is infeasible). Note that this is a work-in-progress and we limit
ourselves to processing pipelined DAG circuits for now.

Figure 2 outlines our CAD flow. Our tool builds on top of FIR-
RTL [3]—an IR and compiler infrastructure for hardware description
languages—as its IR supports all operations and abstractions in clas-
sical RTL languages and can be extended with custom IR nodes
to further ease programmatic manipulation of RTL designs. FIR-
RTL was originally designed as a backend for the Chisel HDL, but
traditional HDLs can be ingested following a pre-processing step
through Yosys [6] and custom tools to convert them to FIRRTL.

Verilog

VHDL

SystemVerilog
FIRRTLYosys

GHDL

FIRRTL compiler

Standard
Lowerings

Custom IR
Timing

Database

Operator
Recomposition

Remove timing
semantics

Pipelining/
Retiming

Verilog

Chisel

Operator
Decomposition

Verilog

Figure 2: CAD flow.

Pipelining requires knowledge of the latencies introduced by
various operations in a circuit. We capture these delays in a timing
database which we create by enumerating all of FIRRTL’s arith-
metic/logic IR operators at various data widths, emitting verilog
for each, and running P&R/STA through Quartus. FIRRTL’s arith-
metic/logic IR operators match those of existing RTLs and their
delays are representative. Note that we use post-fit delays instead
of post-map delays when characterizing operators as inter-LUT
routing makes up a large part of the overall operator latency and
these delays are absent in post-map reports. We assume all wiring-
related IR operators have a delay of zero as such operators do not

need LUTs to be implemented and can be handled directly by the
FPGA’s routing fabric.

Input RTL circuitsmay already be sufficiently pipelined to achieve
the target clock period. However, new FPGAsmay not need as much
pipelining for the same results and it may be possible to reduce the
latency of an accelerator by removing excessive pipeline stages. We
therefore start by dropping all registers in the circuit so as to reason
on the functionality of the circuit rather than on its sequential be-
havior. This transformation is safe as pipeline stages in a DAG only
have connections with the stages that immediately precede/follow
it and the absence of loops means registers’ initial values do not
affect successive invocations of the accelerator. A sea of operators
remains after this step.

At high clock speeds the delay of IR operators may already ex-
ceed the target clock period. High-frequency pipelining therefore
requires reasoning on LUT-level circuit representations to allow
for more fine-grained register placement. Due to the way Quartus
places LUTs when characterizing them in isolation, the delay of a
wide operator is typically smaller than the sum of narrower opera-
tors left behind by the original RTL circuit’s pipeline. In order to
have accurate timings for an operation, it is important to perform
operator recomposition to lift clusters of gates into wider opera-
tors. We can then use the timing database to decide how to better
decompose operators at a fine granularity suitable for pipelining.

We use retiming as the mechanism for automatic pipelining
throughout the compiler. Retiming is a global optimization algo-
rithm and can be expensive on large circuits, so we avoid running it
on full circuit graphs until the exact number of registers needed to
satisfy the target clock period is determined. This number is found
efficiently through the critical path of the design on which a binary
search is performed to add registers at the end of the graph and re-
time them into the circuit. The last successful retiming determines
the minimum number of registers needed to satisfy the clock period.
Retiming is economical in runtime here as the subset of vertices
formed by the critical path represents a short line graph. Finally,
we add the required registers to the end of the full circuit graph
and perform a single global retiming call to pipeline the circuit.

Note that eliminating registers and reintroducing them, as per-
formed by our compiler, removes structural limitations on these
registers that may have prevented effective retiming in the original
RTL circuit. Retiming in the compiler can therefore go deeper than
that possible if the original RTL circuit’s semantics were kept as-is.

5 LIMITATIONS AND FUTUREWORK
This work attempts to raise the level of abstraction of existing RTL
circuits to then automatically pipeline the designs without requiring
a human in the compile cycle. This is a work-in-progress and we
limited our discussion to fully-pipelined input circuits. Future work
will extend the ideas presented here to support circuits with loops,
unbalanced register paths, and memories.

Our approach is akin to considering RTL as a description to be
interpreted rather than be used as-is. Our goal is to enable better
design automation for pre-existing RTL designs by exposing CAD
optimization opportunities beyond those considered by current
FPGA CAD tools that need to preserve all RTL semantics.



Compile-Time RTL Interpreters LATTE ’21, April 15, 2021, Virtual, Earth

REFERENCES
[1] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona,

Tomasz Czajkowski, Stephen D. Brown, and Jason H. Anderson. 2013. LegUp: An
Open-Source High-Level Synthesis Tool for FPGA-Based Processor/Accelerator
Systems. ACM Transactions on Embedded Computing Systems 13, 2, Article 24 (sep
2013). https://doi.org/10.1145/2514740

[2] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang. 2011. High-
Level Synthesis for FPGAs: From Prototyping to Deployment. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 30, 4 (apr 2011), 473–491.
https://doi.org/10.1109/TCAD.2011.2110592

[3] A. Izraelevitz, J. Koenig, P. Li, R. Lin, A. Wang, A. Magyar, D. Kim, C. Schmidt,
C. Markley, J. Lawson, and J. Bachrach. 2017. Reusability is FIRRTL ground:

Hardware construction languages, compiler frameworks, and transformations.
In 2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD).
209–216. https://doi.org/10.1109/ICCAD.2017.8203780

[4] Lana Josipović, Radhika Ghosal, and Paolo Ienne. 2018. Dynamically Scheduled
High-Level Synthesis. In Proceedings of the 2018 ACM/SIGDA International Sym-
posium on Field-Programmable Gate Arrays (Monterey, California, USA). ACM,
127–136. https://doi.org/10.1145/3174243.3174264

[5] Tian Tan, Eriko Nurvitadhi, David Shih, and Derek Chiou. 2018. Evaluating the
Highly-Pipelined Intel® Stratix® 10 FPGAArchitecture Using Open-Source Bench-
marks. In Proceedings of the 2018 International Conference on Field-Programmable
Technology (Naha, Ikinawa, Japan). IEEE, 206–213. https://doi.org/10.1109/FPT.
2018.00038

[6] Clifford Wolf. [n.d.]. Yosys Open SYnthesis Suite. http://www.clifford.at/yosys/.

https://doi.org/10.1145/2514740
https://doi.org/10.1109/TCAD.2011.2110592
https://doi.org/10.1109/ICCAD.2017.8203780
https://doi.org/10.1145/3174243.3174264
https://doi.org/10.1109/FPT.2018.00038
https://doi.org/10.1109/FPT.2018.00038
http://www.clifford.at/yosys/

	Abstract
	1 Introduction
	2 Limitations of the State of the Art
	3 Key Insight
	4 Our approach
	5 Limitations and Future Work
	References

