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1 INTRODUCTION

The rise of heterogeneous computing platforms composed of CPUs
and hardware accelerators has thrown open the design space for
hardware and software architectures. The field is moving fast, often
driven by immediate product wins and early standards. This means
that existing systems exercise complex and somewhat arbitrary
trade-offs between programmability, performance, time-to-market,
and energy efficiency based on how the accelerator is connected to
the CPU and the memory model that is provided.

This is particularly true for FPGAs, whose execution model is
often constrained by the platform and interconnect design. FPGA-
based acceleration offers the chance to radically rethink the hard-
ware/software interface, but today only two contrasting models
predominate - the FPGA as PCle-attached accelerator without co-
herence [2, 4, 8, 10], and closer, cache-coherent integration (CCIX
[5], Gen-Z [9], Intel’s CXL[6]) using newly-defined interoperabilty
protocols.

An FPGA cache-coherent with a CPU has some immediate advan-
tages: consistent access to shared data structures is easier, for exam-
ple. However, all the interconnects above “black-box” the coherence
protocol. Although FPGAs are very different from conventional
cores, there is limited discussion to date on how coherency can be
exploited by FPGAs, and whether it might be usefully customized
to applications.

An FPGA has no cache. A flexible coherence implementation
would serve a wide variety of purposes: simplifying development,
enabling CPU monitoring from the FPGA and real time process-
ing of the instrumentation data, using the FPGA as a sophisticated
memory controller, bridging the cache coherency control across ma-
chines through the FPGA to, e.g., implement disaggregated memory,
etc. Exploring these ideas is not possible in today’s systems.

Here we report on opening up a cache coherence protocol for
tailoring by applications, to enable a deeper exploration of the
design space that commercial platforms allow. The context for
our work is Enzian [1, 7], a research machine built in our group to
explore heterogeneous computing options in a way less constrained
by emerging standards. Enzian (Fig. 1) combines a server-class ARM
CPU with a large FPGA (both with ample RAM and I/O) using the
CPU'’s native coherence protocol.
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Figure 1: Enzian

Enzian is novel in breaking the traditional dichotomy between
cache-coherent NUMA nodes and non-coherent (or DMA-coherent)
I/O accelerators, through the Enzian Coherent Interconnect or ECL:
our FPGA implementation of the CPU’s native coherence protocol.
ECI exposes the protocol to applications at the message level, open-
ing up a range of new uses that go far beyond traditional cache
coherence.

Through ECI, applications on the FPGA side can monitor and
issue coherence messages directly to the CPU, thereby altering
both how the CPU views FPGA memory and how it caches CPU-
local RAM. While ECI includes a “vanilla” implementation of the
protocol layer allowing plug-and-play coherence for any attached
byte-addressable memory, its design adds a much richer set of
operations to FPGA user logic: coherent caching/non-caching reads
and writes, atomics, shootdowns, etc.

While we are not the first to consider new uses for a coherency
protocol (see e.g. PBerry[3], where an FPGA supports remote mem-
ory by monitoring local coherence traffic), ECI enables direct inter-
action with the coherence protocol.

A simple but powerful example of an ECI usecase is maintain-
ing coherent logical views over physical memory to software. The
FPGA can transform and prefetch memory accesses to provide
e.g. a row-store and column-store view on the same in-memory
database relation, and ensure that writes to one cached view propa-
gate to the other in the same CPU cache. However, in addition to
non-traditional execution models for applications, developers can
also use the control ECI provides to implement other functionality
such as instrumentation, cache monitoring, and fault injection for
software on the CPU.
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Figure 2: ECI flexible directory controller

2 IMPLEMENTING ECI IN ENZIAN

What is unusual about ECI is that our directory controller has an
open, extensible structure allowing applications on the FPGA side
to exploit the coherence protocol in new ways. The state space
of the protocol layer can thus be modified to suit the needs of an
application.

ECI thus provides not a single protocol, but a family of protocols
interoperable with the CPU’s existing proprietary protocol: To the
CPU, an ECI node appears to be a full MOESI-based directory con-
troller and cache (even if a particular instatiation implements only
a subset of this, or manipulates the protocol in a nonstandard man-
ner). The underlying transport protocol was robustly designed, and
we benefited from close consultation with the original designers.

An ECI controller is generated from a machine readable speci-
fication, and verified against a comprehensive model of the CPU
protocol validated through extensive trace-based testing. ECI is
an extensible architecture, comprising tracing, parsing and mon-
itoring tools alongside the validated specication and a reference
implementation for a fully-coherent FPGA memory space with no
local cache. Tools are included for the runtime verification of ECI
protocol layers against formal temporal logic specifications.

The reference implementation includes a directory to track (40
bit) FPGA-owned addresses cached on the CPU, together with a
pair of cache-line-sized AXI4 interfaces: One for coherent memory
access from FPGA applications, and the other to permit coherent
(CPU or FPGA) accesses to be routed as the user desires e.g. to
DRAM or to any user logic presenting a read/write interface at
a granularity of 128 bytes. The reference controller supports in-
dependent concurrent tracking of separate cache lines, with full
support for out of order issue and completion of both coherence
and DRAM transactions, including bursts. FPGA applications can
directly initiate cache maintainance operations, such as evictions
and writebacks.

The reference implementation is easily integrated via stanard
interfaces, and customisable, permitting the easy exploration of
application-oriented coherence policies.

3 STATUS AND PLANS

The ECI architecture and reference implementation open up a
number of exciting research directions, some immediate and some
longer-term. The reference implementation permits the immediate
prototyping of ideas such as FPGA-side data transformations (e.g.
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row-column views), or the benefits of fine-grained coherent access
to CPU-cached data from the FPGA.

Longer-term possibilities are extensive: FPGA-side monitoring
of CPU traffic, exploration of the optimal coherence domain (or
domains), forwarding packet data from Enzian’s 100GbE interfaces
without touching DRAM, the implementation of capability-based
firewalls for a cluster-scale coherent system, any many more that
both our group and others intend to explore.

As of writing, a number of complete Enzian systems are undergo-
ing final acceptance testing, and the reference directory controller
has been implemented and is itself now undergoing validation. We
are in the process of performing detailed benchmarks to establish
the performance characteristics of the system. We also intend to
formally verify our reference implementation. Both Enzian itself
and ECI will be released as open source, along with all support-
ing documentation. The hardware itself will be available either for
remote access or purchase by interested groups.
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