The Enzian Coherent Interconnect (ECI): opening a coherence
protocol to research and applications

Abishek Ramdas, David Cock, Timothy Roscoe, Gustavo Alonso
first_ name.last name@inf.ethz.ch
Dept. of Computer Science, ETH Zurich
Switzerland

1 INTRODUCTION

The rise of heterogeneous computing platforms composed of CPUs
and hardware accelerators has thrown open the design space for
hardware and software architectures. The field is moving fast, often
driven by immediate product wins and early standards. This means
that existing systems exercise complex and somewhat arbitrary
trade-offs between programmability, performance, time-to-market,
and energy efficiency based on how the accelerator is connected to
the CPU and the memory model that is provided.

This is particularly true for FPGAs, whose execution model is
often constrained by the platform and interconnect design. FPGA-
based acceleration offers the chance to radically rethink the hard-
ware/software interface, but today only two contrasting models
predominate - the FPGA as PCle-attached accelerator without co-
herence [2, 4, 8, 10], and closer, cache-coherent integration (CCIX
[5], Gen-Z [9], Intel’s CXL[6]) using newly-defined interoperabilty
protocols.

An FPGA cache-coherent with a CPU has some immediate advan-
tages: consistent access to shared data structures is easier, for exam-
ple. However, all the interconnects above “black-box” the coherence
protocol. Although FPGAs are very different from conventional
cores, there is limited discussion to date on how coherency can be
exploited by FPGAs, and whether it might be usefully customized
to applications.

An FPGA has no cache. A flexible coherence implementation
would serve a wide variety of purposes: simplifying development,
enabling CPU monitoring from the FPGA and real time process-
ing of the instrumentation data, using the FPGA as a sophisticated
memory controller, bridging the cache coherency control across ma-
chines through the FPGA to, e.g., implement disaggregated memory,
etc. Exploring these ideas is not possible in today’s systems.

Here we report on opening up a cache coherence protocol for
tailoring by applications, to enable a deeper exploration of the
design space that commercial platforms allow. The context for
our work is Enzian [1, 7], a research machine built in our group to
explore heterogeneous computing options in a way less constrained
by emerging standards. Enzian (Fig. 1) combines a server-class ARM
CPU with a large FPGA (both with ample RAM and I/O) using the
CPU'’s native coherence protocol.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

LATTE 21, April 15, 2021, Virtual, Earth

© 2021 Copyright held by the owner/author(s).

50-60GB/s 50-70GB/s
4x100Gb/s
4xDDR4 or
4xDDR4 512GB @ 2133
128GB @ 2133 64GB @ 2400 16x25Gh/s
QSFP28
2x40Gb/s = = | asezs |
L aoees, ——L— . [asrras
QSFP+ | N 48XARMVB-A < ) Xilinx
asFP+ | T 7| ThunderX-1 ECI XCVU9P =3
10 Shield A ~7N 7 10 Shield
6GB/s | ie
> w
2
0 ||le
[potexs K= | |@1 >[Poiexts |
& 16GB/s
:
4GB/s
eATX Board

Figure 1: Enzian

Enzian is novel in breaking the traditional dichotomy between
cache-coherent NUMA nodes and non-coherent (or DMA-coherent)
I/O accelerators, through the Enzian Coherent Interconnect or ECL:
our FPGA implementation of the CPU’s native coherence protocol.
ECI exposes the protocol to applications at the message level, open-
ing up a range of new uses that go far beyond traditional cache
coherence.

Through ECI, applications on the FPGA side can monitor and
issue coherence messages directly to the CPU, thereby altering
both how the CPU views FPGA memory and how it caches CPU-
local RAM. While ECI includes a “vanilla” implementation of the
protocol layer allowing plug-and-play coherence for any attached
byte-addressable memory, its design adds a much richer set of
operations to FPGA user logic: coherent caching/non-caching reads
and writes, atomics, shootdowns, etc.

While we are not the first to consider new uses for a coherency
protocol (see e.g. PBerry[3], where an FPGA supports remote mem-
ory by monitoring local coherence traffic), ECI enables direct inter-
action with the coherence protocol.

A simple but powerful example of an ECI usecase is maintain-
ing coherent logical views over physical memory to software. The
FPGA can transform and prefetch memory accesses to provide
e.g. a row-store and column-store view on the same in-memory
database relation, and ensure that writes to one cached view propa-
gate to the other in the same CPU cache. However, in addition to
non-traditional execution models for applications, developers can
also use the control ECI provides to implement other functionality
such as instrumentation, cache monitoring, and fault injection for
software on the CPU.



LATTE ’21, April 15, 2021, Virtual, Earth

FPGA side CPU side

| Application (FPGA) ‘ Application (s/w)

I - ECI directory
ECl cache (optional) controller CPU

’EE'# & cache

controller
FPGA-side RAM | —Cache line O
Cache line 1

Cache line 0

- CPU-side RAM
Cache line 1

Figure 2: ECI flexible directory controller

2 IMPLEMENTING ECI IN ENZIAN

What is unusual about ECI is that our directory controller has an
open, extensible structure allowing applications on the FPGA side
to exploit the coherence protocol in new ways. The state space
of the protocol layer can thus be modified to suit the needs of an
application.

ECI thus provides not a single protocol, but a family of protocols
interoperable with the CPU’s existing proprietary protocol: To the
CPU, an ECI node appears to be a full MOESI-based directory con-
troller and cache (even if a particular instatiation implements only
a subset of this, or manipulates the protocol in a nonstandard man-
ner). The underlying transport protocol was robustly designed, and
we benefited from close consultation with the original designers.

An ECI controller is generated from a machine readable speci-
fication, and verified against a comprehensive model of the CPU
protocol validated through extensive trace-based testing. ECI is
an extensible architecture, comprising tracing, parsing and mon-
itoring tools alongside the validated specication and a reference
implementation for a fully-coherent FPGA memory space with no
local cache. Tools are included for the runtime verification of ECI
protocol layers against formal temporal logic specifications.

The reference implementation includes a directory to track (40
bit) FPGA-owned addresses cached on the CPU, together with a
pair of cache-line-sized AXI4 interfaces: One for coherent memory
access from FPGA applications, and the other to permit coherent
(CPU or FPGA) accesses to be routed as the user desires e.g. to
DRAM or to any user logic presenting a read/write interface at
a granularity of 128 bytes. The reference controller supports in-
dependent concurrent tracking of separate cache lines, with full
support for out of order issue and completion of both coherence
and DRAM transactions, including bursts. FPGA applications can
directly initiate cache maintainance operations, such as evictions
and writebacks.

The reference implementation is easily integrated via stanard
interfaces, and customisable, permitting the easy exploration of
application-oriented coherence policies.

3 STATUS AND PLANS

The ECI architecture and reference implementation open up a
number of exciting research directions, some immediate and some
longer-term. The reference implementation permits the immediate
prototyping of ideas such as FPGA-side data transformations (e.g.

Abishek Ramdas, David Cock, Timothy Roscoe, Gustavo Alonso

row-column views), or the benefits of fine-grained coherent access
to CPU-cached data from the FPGA.

Longer-term possibilities are extensive: FPGA-side monitoring
of CPU traffic, exploration of the optimal coherence domain (or
domains), forwarding packet data from Enzian’s 100GbE interfaces
without touching DRAM, the implementation of capability-based
firewalls for a cluster-scale coherent system, any many more that
both our group and others intend to explore.

As of writing, a number of complete Enzian systems are undergo-
ing final acceptance testing, and the reference directory controller
has been implemented and is itself now undergoing validation. We
are in the process of performing detailed benchmarks to establish
the performance characteristics of the system. We also intend to
formally verify our reference implementation. Both Enzian itself
and ECI will be released as open source, along with all support-
ing documentation. The hardware itself will be available either for
remote access or purchase by interested groups.

ACKNOWLEDGMENTS

We would like to thank Xilinx, Cavium/Marvell, and VMware for
their generous help with this project, and the entire Enzian team
for input and feedback on this work. In particular, Mohsen Owaida
did much initial implementation of ECL

REFERENCES

[1] Gustavo Alonso, Timothy Roscoe, David Cock, Mohsen Ewaida, Kaan Kara, Dario
Korolija, David Sidler, and Zeke Wang. 2020. Tackling Hardware/Software co-
design from a database perspective. In CIDR 2020, 10th Conference on Innovative
Data Systems Research, Amsterdam, The Netherlands, January 12-15, 2020, Online
Proceedings. www.cidrdb.org. http://cidrdb.org/cidr2020/papers/p30-alonso-
cidr20.pdf

[2] Amazon Web Services [n.d.]. AQUA (Advanced Query Accelerator) for Amazon
Redshift. Amazon Web Services. https://pages.awscloud.com/AQUA_Preview.
html

[3] Irina Calciu, Ivan Puddu, Aasheesh Kolli, Andreas Nowatzyk, Jayneel Gandhi,
Onur Mutlu, and Pratap Subrahmanyam. 2019. Project PBerry: FPGA Acceleration
for Remote Memory. In Proceedings of the Workshop on Hot Topics in Operating
Systems, HotOS 2019, Bertinoro, Italy, May 13-15, 2019. ACM, 127-135. https:
//doi.org/10.1145/3317550.3321424

[4] Adrian M. Caulfield, Eric S. Chung, Andrew Putnam, Hari Angepat, Jeremy Fow-
ers, Michael Haselman, Stephen Heil, Matt Humphrey, Puneet Kaur, Joo-Young
Kim, Daniel Lo, Todd Massengill, Kalin Ovtcharov, Michael Papamichael, Lisa
Woods, Sitaram Lanka, Derek Chiou, and Doug Burger. 2016. A cloud-scale
acceleration architecture. In 49th Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO 2016, Taipei, Taiwan, October 15-19, 2016. IEEE Com-
puter Society, 7:1-7:13. https://doi.org/10.1109/MICRO.2016.7783710

[5] CCIX Consortium [n.d.]. CCIX - Cache Coherent Interconnect for Accelerators.
CCIX Consortium. http://www.ccixconsortium.com

[6] Stephen Van Doren. 2019. Compute Express Link. In 2019 IEEE Symposium on
High-Performance Interconnects, HOTI 2019, Santa Clara, CA, USA, August 14-16,
2019. IEEE, 18. https://doi.org/10.1109/HOTI.2019.00017

[7] ETH Zurich [n.d.]. Enzian, a research computer. ETH Zurich. https://www.
enzian.systems/

[8] Daniel Firestone, Andrew Putnam, Sambrama Mundkur, Derek Chiou, Alireza
Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian M. Caulfield,
Eric S. Chung, Harish Kumar Chandrappa, Somesh Chaturmohta, Matt Humphrey,
Jack Lavier, Norman Lam, Fengfen Liu, Kalin Ovtcharov, Jitu Padhye, Gautham
Popuri, Shachar Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivaku-
mar, Nisheeth Srivastava, Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug
Burger, Kushagra Vaid, David A. Maltz, and Albert G. Greenberg. 2018. Azure Ac-
celerated Networking: SmartNICs in the Public Cloud. In 15th USENIX Symposium
on Networked Systems Design and Implementation, NSDI 2018, Renton, WA, USA,
April 9-11, 2018, Sujata Banerjee and Srinivasan Seshan (Eds.). USENIX Associa-
tion, 51-66. https://www.usenix.org/conference/nsdi18/presentation/firestone

[9] Gen-Z Consortium [n.d.]. Gen-Z. Gen-Z Consortium. http://genzconsortium.org/

[10] Andrew Putnam, Adrian M. Caulfield, Eric S. Chung, Derek Chiou, Kypros Con-
stantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth
Gopal, Jan Gray, Michael Haselman, Scott Hauck, Stephen Heil, Amir Hormati,


http://cidrdb.org/cidr2020/papers/p30-alonso-cidr20.pdf
http://cidrdb.org/cidr2020/papers/p30-alonso-cidr20.pdf
https://pages.awscloud.com/AQUA_Preview.html
https://pages.awscloud.com/AQUA_Preview.html
https://doi.org/10.1145/3317550.3321424
https://doi.org/10.1145/3317550.3321424
https://doi.org/10.1109/MICRO.2016.7783710
http://www.ccixconsortium.com
https://doi.org/10.1109/HOTI.2019.00017
https://www.enzian.systems/
https://www.enzian.systems/
https://www.usenix.org/conference/nsdi18/presentation/firestone
http://genzconsortium.org/

The Enzian Coherent Interconnect (ECI): opening a coherence protocol to research and applications LATTE ’21, April 15, 2021, Virtual, Earth

Joo-Young Kim, Sitaram Lanka, James R. Larus, Eric Peterson, Simon Pope, Aaron June 14-18, 2014. IEEE Computer Society, 13-24. https://doi.org/10.1109/ISCA.
Smith, Jason Thong, Phillip Yi Xiao, and Doug Burger. 2014. A reconfigurable 2014.6853195

fabric for accelerating large-scale datacenter services. In ACM/IEEE 41st Interna-

tional Symposium on Computer Architecture, ISCA 2014, Minneapolis, MN, USA,


https://doi.org/10.1109/ISCA.2014.6853195
https://doi.org/10.1109/ISCA.2014.6853195

	1 Introduction
	2 Implementing ECI in Enzian
	3 Status and Plans
	Acknowledgments
	References

