
What are the Semantics of Hardware?
Gilbert Bernstein

UC Berkeley
Ross Daly

Stanford University

Jonathan Ragan-Kelley
MIT

Pat Hanrahan
Stanford University

ABSTRACT
Recently, numerous hardware description, hardware generator lan-
guages, and intermediate representations have been developed to
facilitate creation and programming of new accelerators. These
languages require a reference interpreter to describe their seman-
tics. These semantics differ according to the level of abstraction at
which a circuit is described. We propose an endeavor to formalize
and relate each level of semantics using abstract interpretation.

1 INTRODUCTION
There has been a proliferation of hardware design languages [3, 5,
10, 16, 22], domain-specific languages for hardware [2, 11, 12, 14, 17,
18], high level synthesis languages (HLS) [4, 6], and intermediate
languages [9, 13, 20, 23]. These languages appeal to a variety of
semantics, at varying levels of clarity and formality. For the de-
velopers of such languages, questions of semantics pragmatically
resolve into the questions “how do I implement a reference inter-
preter?” “how do I implement a performant simulator?” and “why
do I believe different interpreters/simulators for my language are
consistent?”

There are at least three major points of view on implementing
interpreters/simulators. If the language resembles sequential code
(e.g. HLS), then the host software-language semantics are often
appealed to. In functional HDLs, some dataflow interpretation[15]
is commonly used. Verilog itself uses a form of event-based simu-
lation that resembles dataflow[1]. Lastly, many high-performance
simulators flatten module hierarchy, eliminate loops by breaking
the circuit at registers, and compile a single transition function for
updating the state at each synchronous clock.

Each of these approaches run into various issues. The sequential
code view breaks down in the presence of “loopy” hardware that
isn’t simply a feed-forward pipeline. Verilog’s semantics suffer from
inconsistencies across simulators, and a complex specification of
event-processing order within moments of time. Flattening enables
optimization of the circuit simulation, but destroys modularity
in the form of separate compilation. Lastly, the dataflow point of
view (which is the most similar to our proposal) does not handle
combinational loops and other lower-level aspects of hardware
simulation.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
LATTE ’21, April 15, 2021, Virtual, Earth
© 2021 Copyright held by the owner/author(s).

More fundamentally, we are stuck with the problem that there
is no single correct level of abstraction at which to simulate hard-
ware. For instance, how should time be handled? There are at least
high-level asynchronous[15, 18], clock-synchronous, and low-level
asynchronous (e.g. delays and latch-timings) models. Values also
get more exotic than simply 0 or 1 logical voltage levels. Verilog
has four values: 0, 1, X, and Z. VHDL allows a 9-valued logic.

Our idea is to use the theoretical framework of Abstract Interpre-
tation [7] to define semantics, and therefore reference interpreters,
for HDLs at multiple levels of abstraction. At the heart of abstract
interpretation are two big ideas. The first reflects its grounding in
denotational semantics: recursion and loopy dataflow behavior is
defined via fix-point solutions to recursive systems of equations.
However, arbitrary systems of equations do not always have so-
lutions. Therefore the second idea is the construction of abstract
domains using lattices, in which some unique solution can uncon-
ditionally be computed in finite time.

Abstract Interpretation, Model Checking, Theorem Proving, etc.
are often applied to hardware as formal methods (e.g. [21]) to prove
claims about what can or can’t happen in a simulation. Our idea
here differs in that we are using abstract interpretation to define
what simulation means — what the behavior of a specified circuit
is, in the first place. Pragmatically, this means writing reference
interpreters and simulators for HDLs, rather than creating and
checking auxiliary proof collateral for some particular circuit.

2 ABSTRACT INTERPRETATION

Figure 1: SR-Latch built from two NOR gates

Consider the SR-latch in Figure 1 built using twoNOR gates. Even
though this circuit contains combinational loops, we can simulate it
as follows. Let {0, 1,⊤,⊥} be our set of abstract lattice values (⊤ is
read “top”, ⊥ is read “bottom”). Each of these values 𝑥 corresponds
to a subset of all possible concrete values, which we write as 𝛾 (𝑥).
For this lattice, 𝛾 (0) = {0}, 𝛾 (1) = {1}, 𝛾 (⊤) = {0, 1}, 𝛾 (⊥) = {}.
In the inverse direction, we have abstraction 𝛼 (𝑦) as a map from
sets of concrete values to abstract values. Thus, the behavior of



LATTE ’21, April 15, 2021, Virtual, Earth Gilbert Bernstein, Ross Daly, Jonathan Ragan-Kelley, and Pat Hanrahan

𝑥 𝑦 NOR(𝑥 ,𝑦)
1 . 0
0 0 1
0 ⊤ ⊤
⊤ ⊤ ⊤
⊥ . ⊥
⊥ ⊥ ⊥

Table 1: Behavior of NOR-gate on abstract values (symme-
tries omitted, and . represents anything except ⊥)

any specific gate can be lifted to working on abstract values by
(i) sending all inputs back through 𝛾 , (ii) applying the gate to all
possible combinations of inputs, (iii) re-abstracting the resulting
set of possible outputs with 𝛼 . (See table 1 for an example.)

To simulate, we initialize the values on all wires to ⊤, except for
input wires R and S, where the values are known. Now, suppose
we set R to 1 and S to 0. Then, we can evaluate the NOR gate with
R as an input. NOR of 1 and ⊤ yields 0. We then use the lattice
meet operation (written ∧) to merge 0 into the previous R-NOR-
gate output wire, which had value ⊤. The behavior of meet reflects
intersection of the corresponding concrete sets of values, so 0∧⊤ = 0.
(For our whole lattice, 𝑥∧⊤ = 𝑥 , 𝑥∧𝑥 = 𝑥 , 𝑥∧⊥ = ⊥, and 0∧1 = ⊥)
Continuing this simulation until convergence yields the output 0
from the latch. If we instead began our simulation with S = R = 0,
then we converge to output ⊤.

As another example, consider a loop of three NOT-gates, as one
might use to build a clock. If we set any given wire to 0 or 1 and then
simulate, the simulation will converge to all wires having value ⊥.
In general, our lattice construction ensures that any simulation will
converge to a unique fix-point solution in finite time, regardless of
the order in which gates are evaluated. Thus, any simulation in this
mold inherently supports parallelization and distribution.

The ⊤ value discussed above helps us clarify what values like
X (in Verilog) ought to mean. However, note that the concept here
is clearer than “unknown”: ⊤ means a wire might be 0 or 1, but
not necessarily. ⊥ is also “unknown” but with the meaning that no
solutions are possible. Z (from Verilog) doesn’t correspond to either
of these abstract values.

A physical triple inverter loop will generate an oscillatory signal,
but at this atemporal level of abstraction, the concept of oscillation
is nonsense. Likewise, setting all inputs to the SR-latch to 0 yields
⊤ as output, rather than the “previous” value, because our values
(and simulation) is atemporal.

2.1 Time
In order to account for time in our simulations, we can replace our
simple domain of values (i.e. {0, 1,⊤,⊥}) with signals-over-time in at
least twoways. Given a fixed global clock (i.e. a synchronousmodel),
we can think of signals as infinite (or bounded) sequences of values.
Otherwise, we can think of signals as piece-wise constant functions
of time, encoded as sequences of (time, val)-pairs, where time is
always increasing. Each pair encodes a change in the function at
time to value.

Both of these models are themselves lattices, where their values
are drawn from a lattice. We can compute the ∧ of synchronous se-
quences by taking the element-wise∧. For asynchronous sequences,
we can merge the two time-sorted sequences and ∧ at each point in

time, using the last change in the other signal. We can also establish
an abstraction relationship between these two lattices themselves.
Given a clock-rate, a synchronous signal can be converted to an
asynchronous signal by annotating it with regular time-stamps. In
the other direction, any asynchronous signal can be converted to a
synchronous signal by “joining” (∨, which is dual to ∧) all values
within each regular time-step; this “join” is the abstract analog of
the union of sets of concrete values.

2.2 Meaning of Z
In Verilog, the purpose of the “Z” value is to allow the simulation
of circuits whose behavior relies on high-impedance. This occurs
where wires lack an intrinsic dataflow direction (e.g. a bus wire
driven by multiple tri-state buffers). The simplest such case is a
transistor, where there is no inherent directionality between the
source and the drain. By extending the framework of abstract inter-
pretation to allow for components like transistors to define relations
rather than functions (like the NOR gate earlier), we can also simu-
late multi-directional behavior on wires. In doing so, we find that
“Z” is not properly thought of as a value in the first place.

3 FURTHER DIRECTIONS
If we replace our underlying {0, 1} value-domain with a continuous
model of voltages (in the interval [0, 1.8]) using polyhedral abstract
values [8], then we can analyze analog circuit behavior. We can
also abstract voltages via tolerance-defined bins, which we expect
will give us leverage on disentangling the meaning of VHDL’s
9-valued logic. Ultimately, this procession towards lower levels
of abstraction reaches physics, where behavior is defined as the
solution of systems of differential equations—also amenable to
abstraction.

New “just-in-time” [19] or distributed simulation methods pro-
pose to separately compile parts of circuits that must then “synchro-
nize” or converge via communication. The fix-point formulation
of semantics clarifies the conditions under which such simulations
converge to a unique solution.

Applying formal methods below the clock-synchronous level of
abstraction is possible using these semantics. For instance, we be-
lieve it should be possible to show that a given component bridging
clock domains does not exhibit meta-stability errors.

Most importantly, our existing prototype is less than 500 lines
of code. Drastically reducing the complexity of developing robust
and fully-featured HDLs has important ramifications for pedagogy
and future research.

REFERENCES
[1] 2017. IEEE Draft Standard for SystemVerilog–Unified Hardware Design, Specifi-

cation, and Verification Language. IEEE P1800/D3, April 2017 (Revision of IEEE
Std 1800-2012) (2017), 1–1316.

[2] Christiaan Baaij, Matthijs Kooijman, Jan Kuper, Arjan Boeijink, and Marco Ger-
ards. 2010. C? ash: Structural descriptions of synchronous hardware using haskell.
In 2010 13th Euromicro Conference on Digital System Design: Architectures, Methods
and Tools. IEEE, 714–721.

[3] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman,
Rimas Avižienis, JohnWawrzynek, and Krste Asanović. 2012. Chisel: constructing
hardware in a scala embedded language. In DAC Design Automation Conference
2012. IEEE, 1212–1221.

[4] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona,
Jason H Anderson, Stephen Brown, and Tomasz Czajkowski. 2011. LegUp: high-
level synthesis for FPGA-based processor/accelerator systems. In Proceedings of



What are the Semantics of Hardware? LATTE ’21, April 15, 2021, Virtual, Earth

the 19th ACM/SIGDA international symposium on Field programmable gate arrays.
33–36.

[5] John Clow, Georgios Tzimpragos, Deeksha Dangwal, Sammy Guo, Joseph McMa-
han, and Timothy Sherwood. 2017. A pythonic approach for rapid hardware
prototyping and instrumentation. In 2017 27th International Conference on Field
Programmable Logic and Applications (FPL). IEEE, 1–7.

[6] Jason Cong, Bin Liu, Stephen Neuendorffer, Juanjo Noguera, Kees Vissers, and
Zhiru Zhang. 2011. High-level synthesis for FPGAs: From prototyping to de-
ployment. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 30, 4 (2011), 473–491.

[7] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified
Lattice Model for Static Analysis of Programs by Construction or Approxi-
mation of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Sympo-
sium on Principles of Programming Languages (Los Angeles, California) (POPL
’77). Association for Computing Machinery, New York, NY, USA, 238–252.
https://doi.org/10.1145/512950.512973

[8] Patrick Cousot and Nicolas Halbwachs. 1978. Automatic Discovery of Linear
Restraints among Variables of a Program. In Proceedings of the 5th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages (Tucson, Arizona)
(POPL ’78). Association for Computing Machinery, New York, NY, USA, 84–96.
https://doi.org/10.1145/512760.512770

[9] Ross Daly, Lenny Truong, and Pat Hanrahan. 2018. Invoking and linking gener-
ators from multiple hardware languages using coreir. In Proceedings of the 1st
Workshop on Open-Source EDA Technology.

[10] Jan Decaluwe. 2004. MyHDL: a Python-Based Hardware Description Language.
Linux journal 127 (2004), 84–87.

[11] David Durst, Matthew Feldman, Dillon Huff, David Akeley, Ross Daly,
Gilbert Louis Bernstein, Marco Patrignani, Kayvon Fatahalian, and Pat Han-
rahan. 2020. Type-directed scheduling of streaming accelerators. In Proceedings
of the 41st ACM SIGPLAN Conference on Programming Language Design and
Implementation. 408–422.

[12] James Hegarty, Ross Daly, Zachary DeVito, Jonathan Ragan-Kelley, Mark
Horowitz, and Pat Hanrahan. 2016. Rigel: Flexible multi-rate image process-
ing hardware. ACM Transactions on Graphics (TOG) 35, 4 (2016), 1–11.

[13] Adam Izraelevitz, Jack Koenig, Patrick Li, Richard Lin, Angie Wang, Albert
Magyar, Donggyu Kim, Colin Schmidt, Chick Markley, Jim Lawson, et al. 2017.

Reusability is FIRRTL ground: Hardware construction languages, compiler frame-
works, and transformations. In 2017 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). IEEE, 209–216.

[14] David Koeplinger, Matthew Feldman, Raghu Prabhakar, Yaqi Zhang, StefanHadjis,
Ruben Fiszel, Tian Zhao, Luigi Nardi, Ardavan Pedram, Christos Kozyrakis, et al.
2018. Spatial: A language and compiler for application accelerators. In Proceedings
of the 39th ACM SIGPLAN Conference on Programming Language Design and
Implementation. 296–311.

[15] Edward A Lee and Thomas M Parks. 1995. Dataflow process networks. Proc.
IEEE 83, 5 (1995), 773–801.

[16] Derek Lockhart, Gary Zibrat, and Christopher Batten. 2014. PyMTL: A unified
framework for vertically integrated computer architecture research. In 2014 47th
Annual IEEE/ACM International Symposium on Microarchitecture. IEEE, 280–292.

[17] Rachit Nigam, Sachille Atapattu, Samuel Thomas, Zhijing Li, Theodore Bauer,
Yuwei Ye, Apurva Koti, Adrian Sampson, and Zhiru Zhang. 2020. Predictable
accelerator design with time-sensitive affine types. In Proceedings of the 41st
ACM SIGPLAN Conference on Programming Language Design and Implementation.
393–407.

[18] Rishiyur Nikhil. 2004. Bluespec System Verilog: efficient, correct RTL from high
level specifications. In Proceedings. Second ACM and IEEE International Conference
on Formal Methods and Models for Co-Design, 2004. MEMOCODE’04. IEEE, 69–70.

[19] Eric Schkufza, Michael Wei, and Christopher J. Rossbach. 2019. Just-In-Time
Compilation for Verilog: A New Technique for Improving the FPGA Program-
ming Experience. In Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems (Provi-
dence, RI, USA) (ASPLOS ’19). Association for Computing Machinery, New York,
NY, USA, 271–286. https://doi.org/10.1145/3297858.3304010

[20] Fabian Schuiki, Andreas Kurth, Tobias Grosser, and Luca Benini. 2020. Llhd:
A multi-level intermediate representation for hardware description languages.
In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation. 258–271.

[21] Carl-Johan H. Seger and Randal E. Bryant. 1995. Formal Verification by Symbolic
Evaluation of Partially-Ordered Trajectories. Form. Methods Syst. Des. 6, 2 (March
1995), 147–189. https://doi.org/10.1007/BF01383966

[22] Lenny Truong, Raj Setaluri, and Pat Hanrahan. 2016. Magma. https://github.
com/phanrahan/magma.

[23] Clifford Wolf. 2016. Yosys open synthesis suite.

https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512760.512770
https://doi.org/10.1145/3297858.3304010
https://doi.org/10.1007/BF01383966
https://github.com/phanrahan/magma
https://github.com/phanrahan/magma

	Abstract
	1 Introduction
	2 Abstract Interpretation
	2.1 Time
	2.2 Meaning of Z

	3 Further Directions
	References

