
A Position on Transparent Reconfigurable Systems
Luís M. Sousa
lm.sousa@fe.up.pt

Faculty of Engineering, University of
Porto

Porto, Portugal

Nuno Paulino
nmcp@fe.up.pt

INESC-TEC and Faculty of
Engineering, University of Porto

Porto, Portugal

João Canas Ferreira
jcf@fe.up.pt

INESC-TEC and Faculty of
Engineering, University of Porto

Porto, Portugal

ABSTRACT
With the ever more pressing issue arising from the phenomenon
known as the death or slowdown of Moore’s Law and the Dennard
Scaling, compute performance has not been increasing at the rate
the industry had been accustomed to over the decades [7]. This has
prompted a shift from mostly homogeneous compute architectures
to increasingly heterogeneous ones [1]. As these systems become
increasingly complex, manual tuning and management of these
heterogeneous resources becomes unfeasible. In this paper, we pro-
pose a runtime mechanism for automatic reconfigurable resource
management that will enable a hypothetical flow for combined
hardware and software compilation.

1 INTRODUCTION
An application’s performance can be maximised if it is executed
on specialised hardware, both from a time and power consump-
tion perspective. As customers demand higher performance and
functionality, complexity and development time tend to increase.
Furthermore, since silicon area is expensive [2], the use of Hard-
ware Accelerators (HwAs) is only justified under certain conditions.
Firstly, that they are used frequently to justify the design time and
area expended. Secondly, that their workload is both well defined
and amenable for parallelization, so that performance benefits can
be maximised.

A task is only worth using an accelerator if the time it takes
to be completed on such an accelerator is lower than the time it
would take on general-purpose hardware. The time to transfer
the data to the accelerator must be taken into account. Consider
an embedded application with N functions for which accelerator
circuits have been created. At run-time, the functions are called
with arbitrary arguments, potentially in an unknown order. If the
device harbouring the HwAs is incapable of implementing all N
accelerators concurrently, some sort of management must be made
in order to make available the most valuable subset of HwAs at any
given time.

Traditionally, the developer of a heterogeneous system must un-
derstand the algorithmic component of the application, design the
appropriate hardware to accelerate candidate regions (e.g. bottle-
necks or good parallelization opportunities), and then must sched-
ule workloads onto the different components, and synchronise their
behaviour [12, 15].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
LATTE ’21, April 15, 2021, Virtual, Earth
© 2021 Copyright held by the owner/author(s).

The hardware design aspect has been addressed, in part by new
tools such as High-Level Synthesis (HLS) which can be used to
automatically generate circuit descriptions from functions written
in C/C++ code [8, 14]. This enables simpler and lower cost devel-
opment workflows. For certain execution models such as Field-
Programmable-Gate-Array (FPGA) based server boards, HLS also
provides Application Programming Interface (API) level integration
of the resulting components.

Although FPGA devices lack the advantages of full-custom, i.e.
Application Specific Integrated Circuit (ASIC) implementations [9],
they introduce new paradigms to these heterogeneous systems by
allowing the application to define custom circuitry to be imple-
mented.

This capability for reconfiguration allows for a single underlying
chip to be used to implement the HwAs required by a specific
application. Additionally, algorithms are subject to change due to
performance reasons, different application needs, or bug fixes. As
FPGAs are reconfigurable, the cost-cutting is multiplied as no new
devices need to be fabricated and deployed.

Another advantage of FPGAs for application-specific HwA de-
sign is the unique ability of hot-swapping [6] accelerator circuits
at run-time, which is referred to as Dynamic Partial Reconfigu-
ration (DPR) [13]. This feature, which has not seen widespread
adoption in real-world applications, allows for a targeted FPGA
area to be reconfigured while the device is in operation, allow-
ing for the same resources to implement multiple functions in a
time-multiplexed manner. (Figure 1) Allowing an application to hot-
swap accelerators instead of solely dealing with a fixed, predefined
set, implemented at boot-time, greatly expands on the possibilities
of using FPGA devices as platforms for implementing accelera-
tors. Those that are not used concurrently can be swapped out
as needed freeing up space for others, reducing the total area of
re-configurable fabric required to implement the complete set of
HwAs of a specific application. By allowing time-multiplexed use
of limited silicon resources, smaller and less expensive devices can
be utilised.

Given this context, developers that wish to exploit heterogene-
ity in the context of FPGAs for the embedded domain, while also
relying on their DPR capability for better silicon area usage, must
therefore manually perform hardware/software partitioning, hard-
ware design and testing, and runtimemanagement of reconfigurable
slots, both spatially and temporally.

2 PROPOSED SOLUTION
Ourwork focuses on the implementation of a runtime resourceman-
agement mechanism based on decision trees. We envision this as
part of compiler-based hardware/software partitioning approaches



LATTE ’21, April 15, 2021, Virtual, Earth Luís M. Sousa, Nuno Paulino, and João Canas Ferreira

CPU Core

CPU Core

Reconfigurable Logic

MPSoC

Static

HwA 1 HwA 2

HwA 4HwA 3

HwA 5

HwA N

Logic

System Memory

Figure 1: Proposed Architecture

previously proposed in the state-of-the-art, which can be sum-
marised as 1) identifying segmented regions of code amenable for
acceleration, 2) generating circuits for those regions without de-
veloper intervention, and 3) inserting invocations to the custom
hardware. We aim to augment the accelerator invocation runtime
management capabilities. Namely, 1) determining if a given acceler-
ated function can indeed benefit from hardware invocation, versus
its software counterpart, based on runtime function input parame-
ters, and 2) falling back to software execution based on available
accelerator slots.

This would determine if it is advantageous to implement an
accelerator for a specific task execution and offload it to a DPR-
based slot or execute that task on the general-purpose hardware.

Previous work has been done with this concept. However, the
approaches used require time-consuming offline profiling and train-
ing of the used models [3, 4, 11] not consistent with compiler flows.
These can provide very good offloading decisions on a system en-
suring great performance but at the sacrifice of portability. The
models developed for one particular system are not applicable if
any of the components, or their operating frequency are changed,
even when maintaining the same Instruction Set Architecture (ISA).
Any change in system configuration will require profiling of the
new system and retraining.

Our proposal, intended to automate the use of HLS and DPR
transparently, requires no offline profiling and therefore no ex-
pended time dealing with changes to the code base. A custom
decision engine can be trained on a per-device level that provides
decisions tailored to the application running on such a device by
employing online Decision Tree (DT) learning [5] fed by data such
as the values of the arguments of the functions that are being called,
the size of the data they will operate on, an estimate of the arith-
metic intensity obtained through static analysis, the order in which
the functions are called, whether or not the corresponding HwA is
already loaded into the FPGA and the temporal overhead of loading
the HwA via DPR (Algorithm 1).

The process starts by using the DT to decide if either software
or hardware execution should be used to target each individual
function call. If the DT’s confidence level in its decision is above
a user-defined threshold, the chosen component will execute the
function and return the result. On the other hand, if the confidence

Algorithm 1: Runtime Decision Engine
Initialisation;
Use the parameters of the function call in DT.
Let 𝜎 be the confidence in the choice made by the DT.
if 𝜎 > confidence threshold then

Execute function on the preferred platform.
else

Start execution on CPU.
Start timer.
Use DPR to load the HwA (if needed).
Copy input data to HwA.
Start execution on HwA.

end
if CPU or HwA is finished then

Halt execution of slower platform.
Copy result from HwA (if available).
Stop timer.
Train DT using the winner.

else

end

level in the decision is low, the function is executed concurrently on
both Central Processing Unit (CPU) and HwA. Execution is halted
once either concurrent execution (i.e., software and hardware) ter-
minates. The result is used to train the DT, increasing its confidence
level in that region of the problem space.

The Hoeffding Tree algorithm [5] is the method we propose to
use in this Engine. It guarantees an asymptotically identical result
when compared to batch learners, assuming that the data distribu-
tion does not change over time. Furthermore, several improvements
to the original algorithm have also been proposed to make it more
efficient when executed on an FPGA architecture [10].

By compiling the information of all the leaf nodes on the DT,
a list of the most used HwAs can be obtained. These can be kept
preloaded in the FPGA fabric to minimise DPR overhead. Take a
pair of identical devices (A & B) deployed in different conditions.
Device A may use HwA 1 more often than device B that prefers
HwA 2 due to the conditions surrounding the devices. By keeping
HwA 1 preloaded on device A better performance can be achieved
by cutting the reconfiguration time. Device Amay also have a better
CPU than device B. This can mean that, for particular scenarios,
device A may prefer CPU execution where device B will use HwA
3.

We propose to explore the implementation of such decision algo-
rithms, firstly through software implementations on-chip running
in an auxiliary processor, and then via hardware implementations
of the DT. Leveraging technologies such as HLS and DPR, we thus
aim to increase the abstraction level given to programmers for
the use of re-configurable resources by shifting these development
concerns towards the compiler.

ACKNOWLEDGMENTS
This work was supported by the PEPCC project (PTDC/EEI-HAC/
30848/2017), financed by Fundação para a Ciência e Tecnologia
(FCT).



A Position on Transparent Reconfigurable Systems LATTE ’21, April 15, 2021, Virtual, Earth

REFERENCES
[1] Abderazak Ben Abdallah. 2017. Heterogeneous Computing: An Emerging Par-

adigm of Embedded Systems Design. In Computational Frameworks: Systems,
Models and Applications. Elsevier, 61–93. https://doi.org/10.1016/B978-1-78548-
256-4.50003-X

[2] Mark T. Bohr and Ian A Young. 2017. CMOS Scaling Trends and Beyond. IEEE
Micro 37, 6 (2017), 20–29. https://doi.org/10.1109/MM.2017.4241347

[3] Usman Dastgeer, Lu Li, and Christoph Kessler. 2013. Adaptive implementation
selection in the SkePU skeleton programming library. In Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), Vol. 8299 LNCS. Springer, Berlin, Heidelberg, 170–183.
https://doi.org/10.1007/978-3-642-45293-2{_}13

[4] D. del Rio Astorga, Manuel F. Dolz, Javier Fernandez, and Javier Garcia Blas. 2019.
Hybrid static–dynamic selection of implementation alternatives in heterogeneous
environments. Journal of Supercomputing 75, 8 (8 2019), 4098–4113. https:
//doi.org/10.1007/s11227-017-2147-y

[5] Pedro Domingos and Geoff Hulten. 2000. Mining high-speed data streams. In
Proceeding of the Sixth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. Association for Computing Machinery (ACM), New
York, New York, USA, 71–80. https://doi.org/10.1145/347090.347107

[6] John L. Hennessy and David A. Patterson. 2019. Computer architecture: a quanti-
tative approach (sixth ed.). Morgan Kaufmann.

[7] Mark Horowitz. 2014. 1.1 Computing’s energy problem (and what we can do
about it). In Digest of Technical Papers - IEEE International Solid-State Circuits
Conference, Vol. 57. 10–14. https://doi.org/10.1109/ISSCC.2014.6757323

[8] Intel. 2020. High-Level Synthesis Compiler. https://www.intel.com/content/
www/us/en/software/programmable/quartus-prime/hls-compiler.html

[9] Ian Kuon and Jonathan Rose. 2007. Measuring the gap between FPGAs and ASICs.
In IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
Vol. 26. 203–215. https://doi.org/10.1109/TCAD.2006.884574

[10] Zhe Lin, Sharad Sinha, and Wei Zhang. 2019. Towards efficient and scalable
acceleration of online decision tree learning on FPGA. In Proceedings - 27th IEEE
International Symposium on Field-Programmable Custom Computing Machines,
FCCM 2019. Institute of Electrical and Electronics Engineers Inc., 172–180. https:
//doi.org/10.1109/FCCM.2019.00032

[11] William F. Ogilvie, Pavlos Petoumenos, Zheng Wang, and Hugh Leather. 2015.
Fast automatic heuristic construction using active learning. In Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), Vol. 8967. Springer Verlag, 146–160. https:
//doi.org/10.1007/978-3-319-17473-0{_}10

[12] Gavin Vaz, Heinrich Riebler, Tobias Kenter, and Christian Plessl. 2014. Deferring
accelerator offloading decisions to application runtime. In 2014 International
Conference on ReConFigurable Computing and FPGAs (ReConFig14). IEEE, Cancun,
Mexico, 1–8. https://doi.org/10.1109/ReConFig.2014.7032509

[13] Xilinx Inc. 2020. Dynamic Function eXchange - Vivado Design Suite User Guide.
Technical Report. Online. https://www.xilinx.com/support/documentation/sw_
manuals/xilinx2020_2/ug909-vivado-partial-reconfiguration.pdf

[14] Xilinx Inc. 2020. Vivado High-Level Synthesis. Technical Report. Online. https:
//www.xilinx.com/products/design-tools/vivado/integration/esl-design.html

[15] Gina Yuan, Shoumik Palkar, Deepak Narayanan, and Matei Zaharia. 2020. Of-
fload annotations: Bringing heterogeneous computing to existing libraries and
workloads. In Proceedings of the 2020 USENIX Annual Technical Conference, ATC
2020. 293–306. https://www.usenix.org/conference/atc20/presentation/yuan

https://doi.org/10.1016/B978-1-78548-256-4.50003-X
https://doi.org/10.1016/B978-1-78548-256-4.50003-X
https://doi.org/10.1109/MM.2017.4241347
https://doi.org/10.1007/978-3-642-45293-2{_}13
https://doi.org/10.1007/s11227-017-2147-y
https://doi.org/10.1007/s11227-017-2147-y
https://doi.org/10.1145/347090.347107
https://doi.org/10.1109/ISSCC.2014.6757323
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://doi.org/10.1109/TCAD.2006.884574
https://doi.org/10.1109/FCCM.2019.00032
https://doi.org/10.1109/FCCM.2019.00032
https://doi.org/10.1007/978-3-319-17473-0{_}10
https://doi.org/10.1007/978-3-319-17473-0{_}10
https://doi.org/10.1109/ReConFig.2014.7032509
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_2/ug909-vivado-partial-reconfiguration.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_2/ug909-vivado-partial-reconfiguration.pdf
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.usenix.org/conference/atc20/presentation/yuan

	Abstract
	1 Introduction
	2 Proposed Solution
	Acknowledgments
	References

