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Abstract

Constrained random verification (CRV) in industrial settings

involves manual parameterized test generation, a costly and in-

efficient process. We formulate test parameter configuration as a

blackbox optimization problem and we introduce Smart Regression

Planner (SRP), an approach that automatically configures the tun-

able test parameters to better explore the input space and accelerate

convergence towards coverage. The optimizer in SRP can drive the

parameters update with twomethods: a light-weight random search,

and a Bayesian optimization technique that uses coverage from

nightly regressions as feedback. Our experimental evaluation on

open-source as well as larger industrial designs demonstrates that

frequent perturbation and optimization of test parameters leads to

higher coverage than the human baseline. Importantly, it converges

to coverage milestones significantly faster than the human base-

line. With high-level test parameter optimization, we introduce a

problem space and an opportunity to achieve categorically higher

coverage in industrial settings with very low overhead.

1 Introduction

Constrained random verification (CRV) is the de facto standard

in industrial design verification. Central to this process is the design

of an elaborate testbench that applies pseudorandom stimulus to

the design-under-test (DUT) downstream. The testbench typically

consists of parameterized tests that are manually crafted for ver-

ifying functionality. Each parameter acts as a high-level knob to

control stimulus generation, and the testbench then generates a

family of related stimuli based on these configurable parameters.

Coverage that determines the comprehensiveness of tests is

recorded after each regression. Typically, coverage can be com-

puted by taking the percentage of the tested code segments or

variable values over a predefined set of target code segments and

values. Coverage holes found in a nightly regression are addressed

by changing parameter configurations, adding new parameters

and/or new tests. This verification process is followed iteratively

until 100% coverage is achieved.Test parameter configuration is crit-

ical to the coverage. In the RISCV verification platform [1], we find

that random perturbation of the human-defined test parameters

results in ∼60% coverage difference between the best and worst

configurations.
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Figure 1: The Smart Regression Planner (SRP) framework.

Verification engineers rarely explore the large space of parame-

ters systematically. In this paper, we investigate the value of auto-
matically configuring test parameters towards increased coverage.

We argue that fine-grained parameter tuning provides a unique

opportunity for increasing functional and code coverage with no
additional effort from the verification engineers beyond setting up

the system.

We introduce Smart Regression Planner (SRP), an approach to

configure high-level test parameters with the goal of quick coverage

convergence. Traditional research on input stimulus generation is

at the Boolean input level, instruction (or transaction) level, or at

the constraint level [2, 3, 5]. Searching the space of input stimu-

lus directly suffers from combinatorial explosion. In contrast, SRP

works at a higher level of abstraction that naturally has much fewer

configurable inputs (< 100); nonetheless it directly impacts verifi-

cation coverage. The more tractable input dimensions allow the

application of powerful optimization methods to this problem.

In SRP, we formulate test parameter configuration as a black-

box optimization problem with an objective to maximize coverage.

We first employ a simple random search (random perturbation of

parameters) to configure test parameters as a baseline. We then

apply ML-based Bayesian optimization methods that can lever-

age coverage feedback from past regression tests and learn near

optimal parameter configurations. Bayesian optimization [7] is ag-

nostic to structure and flexible enough to adapt to changes in an

evolving design. While random search relies purely on exploration,

Bayesian optimization exploits learning through feedback. We also

investigate use cases of (1) simultaneously minimizing runtime and

maximizing coverage using multi-objective Bayesian optimization,

and (2) transfer learning, or the ability to transfer learned heuristics

from one set of parameters to another through design evolution.

2 Our Approach: Smart Regression Planner

Fig. 1 shows our SRP Framework for improving coverage closure

in simulation. In our flow, the test uses the parameter configuration

provided by the blackbox optimizer to generate inputs for the DUT.
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Figure 2: Each line represents the mean coverage across five random seeds and the shaded region shows the standard deviation across the

five runs. More exploration leads to highermaximumpoint-in-time coverage (𝐶𝑃𝐼𝑇 ).GP-Bandit+Baseline consistently achieves higher𝐶𝑃𝐼𝑇

than Baseline+Baseline on all designs over.

The point-in-time coverage 𝐶𝑃𝐼𝑇 (a real number between 0 and

100%) is computed by the Verilog simulator that simulates the test

and the DUT, and this value is fed to the blackbox optimizer.

The optimizer then generates a new value 𝑣𝑖 for each test pa-

rameter 𝑝𝑖 from its valid parameter domain which is fed back to

the test. Test parameters can be numerical, categorical, ordinal, or

Boolean. The test and the design are re-simulated with the new

configuration and return the new 𝐶𝑃𝐼𝑇 .

We formulate regression planning as an optimization problem.

The goal is to find 𝑣∗ = argmax𝑣 𝑓 (𝑣), where 𝑣∗ is test configuration
that maximizes the𝐶𝑃𝐼𝑇 . Since the function 𝑓 , that maps a test con-

figuration 𝑣 to 𝐶𝑃𝐼𝑇 does not have any obvious structure that may

be exploited for optimization (such as convexity or smoothness), it

is natural to consider blackbox techniques. In SRP, we use Gaussian

Process Bandits (GP-Bandit) [7] that models coverage results 𝑓

as a Gaussian function of the test configuration. GP-Bandit uses

Bayesian optimization technique, where it maintains a Gaussian

prior 𝐺𝑃 (𝜇, Σ) over 𝑓 and updates it with samples drawn from 𝑓

to get a posterior that better approximates the objective. This algo-

rithm performs exploration and exploitation technique to choose a

test configuration.

3 Experimental Results

We evaluate SRP on two sets of designs: open-source (RISCV [1],

IBEX [6]) as well as a larger industrial design MLChip. In RISCV,

there are in total 15 ordinal test parameters, each with 10–40 cate-

gories. IBEX contains 31 test parameters. 16 of them are categorical

with two classes while the rest are the same ordinal parameters from

the RISCV testbench. In contrast to general-purpose RISCV/IBEX

design, MLChip follows the CISC tradition for its custom instruc-

tion set architecture (ISA) design. The test parameters for MLChip

includes many distribution specifications for the instructions and

the test vector values. We evaluate the performance of SRP with

respect to both Random-Search and GP-Bandit vs the Baseline

which is the human-generated tests with fixed parameters.

3.0.1 SRP+Baseline Flow To benefit from both exploration intro-

duced by SRP and exploitation from low-variance baseline setup

with human-specified parameters, we propose a new use case for

regression testing by running SRP in addition to the original Base-

line flow. Instead of running Baselinemultiple times with different

random seeds every night in real CRV deployment, we propose to

run GP-Bandit in SRP with Baseline.

Wemerge the coverage for the two runs and report it as the cover-

age𝐶𝑃𝐼𝑇 for every iteration. In Fig. 2, we see that this mode ensures

that 𝐶𝑃𝐼𝑇 driven by GP-Bandit+Baseline for almost every

night is higher than the Baseline+Baseline on all designs.

This makes the SRP+Baseline mode a highly attractive proposition

for practical settings. Contrarily, Random_Search+Baseline does

not provide any such assurance. Its exploration is quite expansive

and frequently falls below the baseline. Note that the coverage does

not reach 100% in the experiments as it is infeasible to run the

number of tests till convergence every night.

3.0.2 Multi-Objective Optimization Optimizing for high cover-

age can sometimes lead to unacceptably high simulation runtimes.

An engineer might want to trade off one for the other at differ-

ent points in the verification phase. We explore multi-objective

optimization (MO) in Bayesian optimization [4] to simultaneously

minimize simulation runtime and maximize coverage. Our experi-

ments shows that adding the multi-objective optimization leads to

1.18× speedup in the mean runtime while achieving higher

mean coverage over 200 nights.

3.0.3 Transfer Learning in SRP A typical use case is the addition

of new test parameters and design features as the design evolves.

Instead of re-training the blackbox algorithms in this case, we inves-

tigate the ability to transfer learned heuristics and improve sample

efficiency. In the transfer learning experiments, we held out 5 of the

11 parameters during initial optimization, then added them back to

simulate new parameters being added to the test. Our study shows

that the 𝐶𝑃𝐼𝑇 coverage with transfer learning starts higher

and converges around 20 nights earlier than the runs without

transfer learning, showing the promise of this technique.

4 Future Work

In this work, we have formulated a verification problem capable

of significant practical impact, at an abstraction level where scala-

bility is a natural byproduct. We have found that algorithms like

GP-Bandit that use coverage feedback can further improve the

coverage with faster ramp up and less variance. This work opens up

many research directions like the application of graybox/whitebox

optimization techniques in the future for test parameter optimiza-

tion, the feasibility of a continuous learning ML-based verification

paradigm through the lifetime of the design, and the transfer of

optimization heuristics to new designs. Given meaningful feedback,

similar ML-driven optimizations can be applied to automate other

hardware verification tasks, such as test case selection. A more

direct objective to maximize would be the number of bugs detected.
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