Registerless Hardware Description

Oron Port
soronpo@campus.technion.ac.il
Technion — Israel Institute of Technology
Haifa, Israel

Table 1: Hardware Programming Model Comparison.
Dataflow HDLs can bridge the gap between HLS and RTL.

Hardware Design Hardware
Languages/Tools Design Abstraction & Meta-

v
v
x
x

Abstraction

High-Level VivadoHLS, LegUp, Catapult,
SOEA (ISP Synphony, HerculeS, OpenCL
Dataflow HDL =

(DF-HDL) DFiant

High-Level RTL Chisel, SpinalHDL, PyRTL,
(HL-RTL) nMigen, MyHDL, Bluespec, Cx

SRR
% <%

RTL VHDL, Verilog, SystemVerilog

ABSTRACT

To bridge the programmability gap between HLS and RTL lan-
guages, we claim that hardware programming abstractions must
cover most, if not all, of the numerous synthesizable uses of RTL
constructs. Our proof of concept relies on a novel dataflow hard-
ware description language (HDL) abstraction layer and implements
the DFiant HDL and compiler.

1 INTRODUCTION

Most RTL-alternatives can be classified either as high-level syn-
thesis (HLS) tools or high-level RTL (HL-RTL) languages. On the
one hand, HLS tools (such as Vivado [27], and others [5, 10, 14,
15, 20, 23]) rely on programming languages like C and incorporate
auto-pipelining and optimization mechanisms to make hardware
accelerators accessible for non-hardware engineers. While this ap-
proach is successful in algorithmic acceleration domains, such lan-
guages carry von Neumann sequential semantics and thus hinder
construction of parallel hardware, which is crucial for hardware de-
sign [28]. Moreover, some trivial periodic hardware operations (like
toggling a LED) are unbearably difficult to implement in HLS lan-
guages. On the other hand, HL-RTL languages (such as Chisel [3],
and others [2, 4, 7-9, 13, 17-19, 25]) aim to enhance productivity by
introducing new hardware generation constructs and semantics but
do not abstract away register-level description (even Bluespec [21],
which uses concurrent guarded atomic actions, until recently [11]
assumed rules complete within a single clock cycle). Therefore,
HL-RTL designs are still subjected to the “tyranny of the clock” [24]
and are bound to specific timing and target constraints.

In this paper we claim that better HDLs must adhere to all known
RTL design use-cases, yet still maintain enough abstraction to al-
low automatic pipelining and target-agnostic design. Therefore,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

LATTE 21, April 15, 2021, Virtual, Earth

© 2021 Copyright held by the owner/author(s).

Yoav Etsion
yetsion@technion.ac.il
Technion — Israel Institute of Technology
Haifa, Israel

Dataflow
Stream History

Timers +

Constraints Constraints

2
o
=
©
8
©
E o

Synchronous Synchronous
Technology Backend W Technology Interface

Pipelining Regs Cycle-Accurate Top
Path-Balancing Regs /Internal Interface Regs Derived State Regs
Real-time Delay Regs

CDC Synchronizer Regs Commit State Regs

Clock Division R
Async Synchronizer Regs ockDIVSion{Regs

" RTL Register
Use-Cases

Figure 1: DF-HDL Register Abstraction
Registers use-cases are divided into three main categories,
and abstracted accordingly in DF-HDLs.

we propose a novel dataflow HDL (DF-HDL) abstraction layer to
abstract over registers and clocks. This concept is proven via DFi-
ant! [22], a Scala-embedded DF-HDL that utilizes these dataflow
abstractions to decouple functionality from implementation con-
straints. DFiant brings together constructs and semantics from
dataflow [1, 6, 12, 16, 26], hardware, and software programming
languages to enable truly portable and composable hardware de-
signs. The dataflow model offers implicit concurrency between
independent paths while freeing the designer from explicit register
placement that binds the design to fixed pipelined paths.

Table 1 compares the main hardware programming models ac-
cording to three categories: hardware design fundamentals, which
include capabilities such as IO connectivity, hierarchies, and syn-
chronous design; design abstraction & automation, which includes
abstractions that enable automatic pipelining, path-balancing and
flow control; and finally hardware meta-programming, that enables
simple generation of complex hardware structures. The compari-
son indicates that DFiant bridges the programmability gap between
HLS tools and RTL languages by enabling designers full control
over the generated hardware whilst still enabling features like au-
tomatic pipelining. DFiant is not an HLS language, nor is it an RTL
language. Instead, DFiant is an asynchronous dataflow HDL that
provides abstractions beyond the RTL behavioral model, thereby
reducing verbosity and maintaining portable code.

2 A DATAFLOW HDL ABSTRACTION

The basic notion of a DF-HDL abstraction is that instead of wires
and registers we have dataflow token streams. This key difference
between RTL and dataflow abstractions reveals why the former is
coupled to device and timing constraints, while the latter is agnostic
to them. Primarily, the RTL model requires designers to express what
operations take place in each cycle, whereas the dataflow model only
require the designer to order the operations based on their data de-
pendencies. More specifically, the RTL model utilizes combinational
operations that must complete (their propagation delay) within

Uhttps://dfianthdl.github.io

https://dfianthdl.github.io

LATTE ’21, April 15, 2021, Virtual, Earth

a given cycle if fed to a register, while the dataflow abstraction
only assumes order and not on which cycle operations begin or
complete. By decoupling operations from fixed clock cycles, the
dataflow model enables the compilation toolchain to map opera-
tions to cycles and thereby independently pipeline the design.

Furthermore, the RTL model requires designers to use registers
for a variety of uses and thus binds the design to specific timing
conditions. Specifically, we identified three main uses for registers
in the RTL model: synchronous technology backend, synchronous
technology interface, and design functionality (i.e., state). We sum-
marized the various uses in Fig. 1, and we now turn to discuss them
and how the dataflow model can derive the first two main uses
without explicit user description.

2.1 Synchronous Technology Backend Registers

Registers are often required in a low-level design due to the un-
derlying synchronous technology. Since they are unrelated to the
functional requirement, a dataflow HDL can derive them automati-
cally based on the functional requirements and design constraints.
Pipeline registers are inserted to split long combinational paths, and
their placement is determined by designer-specified constraints,
such as the maximum path cycle latency or the maximum propaga-
tion delay between registers. Path-balancing registers are added to
maintain design correctness when pipelining. Synchronizers, often
composed of registers, are used to mitigate CDC and asynchronous
metastability effects and bring the design to the proper reliability.

2.2 Synchronous Technology Interface Registers

Functional design requirements are often accompanied by synchro-
nous input/output (IO) timing constraints such as clocked protocol
interfaces or real-time restrictions. However, these constraints fre-
quently only affect the interface and not the core design itself.
External IOs that are exposed to the top design hierarchy or black-
boxes that are exposed to the internal design core may impose
synchronous protocols (e.g., data is valid one clock cycle after ad-
dress is set). A dataflow HDL supports legacy RTL constructs to
synchronously interface external IOs and instantiate blackboxes.

Real-time signals or derivations of timed signal inputs require
timer constructs. For example, a design using a 100MHz clock may
drive a UART stream at 1Mbps or toggle a led at 1Hz. Rather than
directly using registers as clock dividers or employing clock gener-
ation components (e.g., PLLs), one can create functional representa-
tion of their timed use-cases. A dataflow HDL has timer constructs
that generate tokens at a given or derived rate. The compiler can
consider all clocks and generate the proper clock tree based on the
available device resources and other design constraints.

2.3 State Registers

State registers are needed when a design must access (previous)
values that are no longer available on an input signal (e.g., cumula-
tive sum or a state-machine’s state). RTL designs invoke registers
(behaviorally) to store the state. But, registers not only store the
state, but also enforce specific cycle latencies. Furthermore, typical
RTL languages declare additional variables and place extra assign-
ments just to save the state. A dataflow HDL overcomes all these
issues by including a construct to initialize and reuse the stream

® Nu e e W —

Oron Port and Yoav Etsion

@df class SMA_DS extends DFDesign {

val x = DFSInt (16) <> IN init O
val y = DFSInt (16) <> OUT

val s0 = x +" x.prev

val s2 = x.prev(2) +" x.prev(3)
val sum = s0 +" s2

y := (sum / 4).resize(16)

}

(a) DS code (.prev accesses the history)
1 (b) DS drawing
Yk = 3 Ok +Xpe—1 + Xp—2 + X—3); Xk<0 =0

@df class SMA_CS extends DFDesign ({

val x = DFSInt (16) <> IN init 0
val y = DFSInt (16) <> OUT
val acc = DFSInt(18) <> VAR init 0
acc := acc - x.prev(4) + x

y := (acc / 4).resize(16)

}

(c) CS code (default access to acc.prev)

(d) CS drawing

Xp-—X]-_,
Yk = Y1 + KK e 9=0

Figure 2: Derived state (DS) and commit state (CS) SMA
DFiant implementation codes and drawings. The state lines
are highlighted in the code.

history. A derived (feedforward) state is a state whose current output
value is independent of its previous value (e.g., detecting if an input
has changed). A commit (feedback) state is a state whose current
output value is dependent on its previous state value (e.g., the new
cumulative sum value is dependent on its previous sum value). The
two kinds of state differ heavily in performance improvement when
the design is pipelined. A derived state path can produce a token
for every clock tick, and can therefore be pipelined to reduce its
cycle time and increase its throughput. In contrast, a commit state
path is circular and cannot be pipelined as-is.

The basic DFiant example given in Fig. 2 provides two implemen-
tations of a simple moving average (SMA) unit; both have a 4-tap
average window with 16-bit integer input and output, and compose
the average arithmetic from the +~ carry-addition and other oper-
ations. The difference is that sMA_DS has only derived state and
can therefore be automatically pipelined by the DFiant compiler,
while sMA_cs has a commit state and cannot be pipelined as-is.
The dataflow history is accessed by invoking .prev with the re-

quired step parameter. The sSMA_CS accumulation variable acc
depends on itself and forms a commit state. Reading from acc
before it is assigned manifests as a default read from acc.prev .
This basic example does not cover various DFiant semantics and
capabilities which include automatic stall and flow control, FSM
meta-programming, combining dynamic and static dataflow, time
abstraction, legacy RTL code integration, and more.

3 CONCLUSION

Modern RTL alternatives abstract either too little or too much. The
numerous register use-cases must meet worthy abstractions to
allow portable designs and minimize verbosity, yet without losing
hardware design expressiveness. To achieve this we use a unique
dataflow HDL abstraction that obfuscates registers and clocks.

ACKNOWLEDGMENTS

This work has been supported by EU H2020 ICT project LEGaTO,
contract #780681.

Registerless Hardware Description

REFERENCES

(1]

[2

—

(3]

[10

[11]

[12

[13]

[14

[15]

(18]

[19

[20]
[21

[22]

~
&

[24]
[25]
[26

[27
[28]

Rishiyur S Nikhil Arvind. 1992. Id: A language with implicit parallelism. In A
Comparative Study of Parallel Programming Languages.

Christiaan Baaij. 2009. CAash: From haskell to hardware. Master’s thesis. Univer-
sity of Twente.

Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman,
Rimas Avizienis, John Wawrzynek, and Krste Asanovi¢. 2012. Chisel: constructing
hardware in a scala embedded language. In ACM/EDAC/IEEE Design Automation
Conference (DAC).

Peter Bellows and Brad Hutchings. 1998. JHDL-an HDL for reconfigurable
systems. In Intl. Symp. on Field-Programmable Custom Computing Machines.
Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona,
Tomasz Czajkowski, Stephen D. Brown, and Jason H. Anderson. 2013. LegUp: An
Open-source High-level Synthesis Tool for FPGA-based Processor/Accelerator
Systems. ACM Trans. on Computer Systems 13 (2013).

P Caspi, D Pilaud, N Halbwachs, and JA Plaice. 1987. LUSTRE: a declarative lan-
guage for real-time programming. Symp. on Principles of Programming Languages
(POPL) (1987).

Papon Charles. 2016. SpinalHDL. http://spinalhdl.github.io/SpinalDoc

John Clow, Georgios Tzimpragos, Deeksha Dangwal, Sammy Guo, Joseph McMa-
han, and Timothy Sherwood. 2017. A pythonic approach for rapid hardware
prototyping and instrumentation. In Intl. Conf. on Field Programmable Logic and
Applications.

Jan Decaluwe. 2004. MyHDL: a python-based hardware description language.
Linux Journal 127 (2004).

Mentor Graphics. 2008. Catapult C synthesis. Website: http://www. mentor. com
(2008).

David J Greaves. 2019. Further sub-cycle and multi-cycle schedulling support
for Bluespec Verilog. In ACM/IEEE Intl. Conf. on Formal Methods and Models for
Co-Design.

John R. Gurd, Chris C. Kirkham, and Ian Watson. 1985. The Manchester prototype
dataflow computer. Comm. ACM 28, 1 (1985).

Shunning Jiang, Berkin Ilbeyi, and Christopher Batten. 2018. Mamba: clos-
ing the performance gap in productive hardware development frameworks. In
ACM/EDAC/IEEE Design Automation Conference (DAC).

Nikolaos Kavvadias and Kostas Masselos. 2013. Hardware design space explo-
ration using HercuLeS HLS. Panhellenic Conference on Informatics (PCI (2013).
David Koeplinger, Matthew Feldman, Raghu Prabhakar, Yaqi Zhang, Stefan Hadjis,
Ruben Fiszel, Tian Zhao, Luigi Nardi, Ardavan Pedram, Christos Kozyrakis, et al.
2018. Spatial: A language and compiler for application accelerators. In Intl. Conf.
on Programming Language Design and Impl. (PLDI).

Paul Le Guernic, Albert Benveniste, Patricia Bournai, and Thierry Gautier. 1986.
Signal-A data flow-oriented language for signal processing. IEEE Trans. on
Acoustics, Speech, and Signal Processing 34, 2 (1986).

Yangiang Liu, Yao Li, Weilun Xiong, Meng Lai, Cheng Chen, Zhengwei Qi, and
Haibing Guan. 2017. Scala Based FPGA Design Flow (Abstract Only). In Intl.
Symp. on Field Programmable Gate Arrays.

Derek Lockhart, Gary Zibrat, and Christopher Batten. 2014. PyMTL: A unified
framework for vertically integrated computer architecture research. In Intl. Symp.
on Microarchitecture (MICRO).

Nick Matthijssen. 2020. Wyre: An ergonomic hardware definition language that
compiles to Verilog. https://github.com/nickmqb/wyre

Microsemi. 2015. Synphony Model Compiler ME. (2015).

Rishiyur Nikhil. 2004. Bluespec System Verilog: efficient, correct RTL from high
level specifications. In ACM/IEEE Intl. Conf. on Formal Methods and Models for
Co-Design.

Oron Port and Yoav Etsion. 2017. DFiant: A Dataflow Hardware Description
Language. In Intl. Conf. on Field Programmable Logic and Applications.

Francois Serre and Markus Piischel. 2019. DSL-Based Hardware Generation with
Scala: Example Fast Fourier Transforms and Sorting Networks. ACM Trans. on
Reconfigurable Technology and Systems (TRETS) 13 (2019).

I Sutherland. 2012. The tyranny of the clock. Comm. ACM 55, 10 (2012).
Synflow. 2014. Cx Language. http://cx-lang.org/

Ghislaine Thuau and Daniel Pilaud. 1991. Using the declarative language Lustre
for circuit verification. In Designing Correct Circuits. Springer.

Xilinx. 2015. Vivado High Level Synthesis User Guide. (2015).

Zhipeng Zhao and James C Hoe. 2017. Using Vivado-HLS for structural design:
a NoC case study. Intl. Symp. on Field Programmable Gate Arrays (2017).

LATTE ’21, April 15, 2021, Virtual, Earth

http://spinalhdl.github.io/SpinalDoc
https://github.com/nickmqb/wyre
http://cx-lang.org/

	Abstract
	1 Introduction
	2 A Dataflow HDL Abstraction
	2.1 Synchronous Technology Backend Registers
	2.2 Synchronous Technology Interface Registers
	2.3 State Registers

	3 Conclusion
	Acknowledgments
	References

