
Improving HLS with Shared Accelerators: A Retrospective
Parnian Mokri
Tufts University

USA

Mark Hempstead
Tufts University

USA

ABSTRACT
This paper is a retrospective paper about our previous ICCAD2020
paper, ReconfAST: An Early Stage identification tool to find Shared
Accelerators (SAs). SAs are specialized hardware accelerators that
execute very different software kernels but share the common hard-
ware functions between them. Our early detection methodology
identifies computationally similar and synthesize-able kernels that
are used to build SAs. Ourmethodology, ReconfAST, transforms one
of the compiler’s intermediate output, the Abstract Syntax Trees
(AST)s, into a new clustered AST (CAST) representation that further
removes unneeded nodes and uses a regular expression to match
common node configurations. SAs can provide increased coverage
if both data flow and control flow similarities between - seemingly
very different- workloads are detected. We saw a maximum re-
duction of above 200% in DSP, 75% reduction for LUTs, and 40%
reduction for FFs compared to the smallest Dedicated Accelerators
(DAs) with the best speedup.

In this paper, we briefly explain our tool and discuss some chal-
lenges we experienced in building a tool that designs accelerators
independent of a specific language. One example is the nonintuitive
results HLS generates based on optimized mapping heuristics. We
suggest ways to improve HLS tools and utilize solutions from other
communities to help designers design and evaluate their systems
methodically.

1 RECONFAST
ReconfAST merges ideas from CAD, compiler, and graph theory to
build an early-stage detection tool that identifies synthesize-able
commonalities between seemingly different workloads from dif-
ferent domains that are used to build Shared Accelerators (SAs).
Each SA resembles an ASIC implementation of one software kernel
but can accelerate two or more distinctly different kernels. Figure 1
shows a simplified example of a system with accelerators for two
MachSuite benchmarks, Stencil2D and Viterbi. Instead of building
a separate Dedicated-Accelerator for each kernel, a single shared
accelerator includes hardware for both kernels. Our automated
ReconfAST identifies hardware the kernels have in common (a loop
with an array multiplication and accumulation in this case) from ap-
plication source code [4]. Figure 2 shows our methodology in more
detail. We build our tool based on the front-end of the llvm-clang
suit. Clang is used to generate the ASTs. All the workloads in our
paper are written in C/C++, but the tool can support OpenCL and
some functional languages. Our tool transforms ASTs into the CAST

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
LATTE ’21, April 15, 2021, Virtual, Earth
© 2021 Copyright held by the owner/author(s).

Sten2D

Viterbi

OUT

OUT

In

In

CTRL

CTRL

AXI

(a) Dedicated Accelerators
(DAs)

Shared Maps

Unique to
Sten2D

Unique to
Viterbi

OUT

CNTRL

IN

AXI
STREAM
BUS

(b) Shared Accelerator (SA)

Figure 1: Improving workload coverage and area effi-
ciency in many-accelerator systems with Shared Accelera-
tors (SAs).

LLVM/Clang Accelerator
Candidates

 for () {
 for () {}
 }

C code

CAST Lib

Coloring Nodes

Pruning and
Clustering

CAST Transformation

CASTAST
Source
Code

Data
D

VF2 Algorithm
(CAST

Isomorphism)

Dynamic
Analysis of

Map

maps

Finding Similarity
Between Kernels

Pruning based
on Data

Dependency

HLS
data
Typ
es

Data
flow

Compute
operation

Control
Structure

categorized
AST

Paragmas of code that
translates to hardware

modules

Figure 2: The ReconfAST methodology.

representations using python transformation scripts. The CAST of
each workload is fed into a subgraph isomorphism, the VF2 library.
VF2 (or other algorithms for graph isomorphism) has not been, to
the best of our knowledge, ever applied to ASTs for use in high-level
HLS hardware identification. We then validate the methodology
by measuring the dynamic coverage using Valgrind/Callgrind and
then analyze the hardware with Vivado HLS.

The main challenge we encountered was learning the heuris-
tics that HLS tools use and excluding non-Pareto optimal results
from our implementations to study our hypothesis. Including a full
sweep of results reveals nonintuitive trends which baffles review-
ers, resulting in rejection of our work. Over the past few years,
there have been studies on unpredictable HLS heuristics, and some
optimizations have been suggested [1],[2],[3].

2 IMPLEMENTATION CHALLENGES
Although HLS tools have made considerable strides in recent years,
they should be improved further to employ best practices from
other communities such as compilers and EDA. For example, loop
unrolling in compilers has long been optimized with heuristics
that evaluate the cost and benefits of different unrolling factors.
However, the HLS tools rely on the designer to discard inefficient
designs [3]. When developing ReconfAST we struggled with the
unpredictable nature of the mapping heuristic in HLS-based tools.

LATTE ’21, April 15, 2021, Virtual, Earth Parnian Mokri and Mark Hempstead

fft-
bg

em

spm
vE

-vi
ter

bi

ste
n2

d-b
ge

m

ste
n3

d-v
ite

rbi

vit
erb

i-b
ge

m

−200

−150

−100

−50

0

SA
 re

so
ur

ce
s

co
m

pa
re

d
to

 D
A(

%
) DSP FF LUT

Change in resources compares to the sum of both DAs.

fft-
bg

em

spm
vE

-vi
ter

bi

ste
n2

d-b
ge

m

ste
n3

d-v
ite

rbi

vit
erb

i-b
ge

m
0.0

0.5

1.0

1.5

2.0

Sp
ee

du
p

2 11
Kernel 1 Kernel 2

The speedup of each kernel (best SA) is compared to the best performing DA with least
speedup.

Figure 3: Change in area utilization normalized to the cost of
the sum of the DAs with smallest number of DSPs; Speedup
is calculated with respect to the Dedicated Accelerator

Figure 3 shows a partial comparison of SAs to the sum of their
respective dedicated accelerators, where in some cases, the SA’s
speedup is considerably better than the DA and for not much in-
crease in resource usage. All SAs have been normalized to the
dedicated accelerator with the best speedup and smallest footprint
on FPGA.

Figure 4 shows the effects optimizations have on different snip-
pets of code like different 𝑙𝑜𝑜𝑝𝑖 where 𝑖 ∈ (1, 2, 3, ..., 5) in bbgemm.
We observed nonintuitive results for the stencil2d-bbgemm and
viterbi-bbgemm SAwhen one workload (bbgemm) engulfs the other
(viterbi). Further analysis showed similar patterns in SAs are di-
rectly linked to the size of the common subset of two workloads,
data dependency, and whether the common subset is a large per-
centage of the workloads’ total execution time. By designing about
10,000 accelerators, we noticed that the most critical factor in find-
ing SAs with good speedup and efficient resource usage is the
absence of data dependencies.

3 IMPROVING ACCELERATOR DESIGN
PROCESS

Like any relatively new research area, the accelerator design process
can improve in many aspects. In our opinion, research in this area is

103 104 105

Number of FFs

100

101

Sp
ee

du
p

ArrayPartitioning1
ArrayPartitioning2
ArrayPartitioning3
ArrayPartitioning4
LoopPipeline1
LoopPipeline2+32
LoopPipeline3

LoopPipeline3+32
LoopPipeline4+32
LoopPipeline5
LoopUnrolling3
LoopUnrolling4
dataFlow-func
dataFlowOriginalFile

default
directiveRcs
loop3Pipeline
loop4Pipeline
loopPipe1+
loopPipeline4+

Figure 4: BBgemm dedicated accelerator optimizations af-
fect on speedup and area (FFs) based on different loops (1..5)

hindered by the lack of 1) predictable and transparent tools; and 2) a
research community respects and knows how to evaluate research
that bisects traditional disciplines.

3.1 Improving Toolchains Toolchains for HLS designs are un-
predictable because they do not include information that designers
take into account while designing at RTL. We noticed that static
analysis of HLS benchmarks, profilers like Valgrind, and compil-
ers (such as Clang’s) front-end intermediate outputs, i.e., Abstract
Syntax Trees and DAGs provide a more comprehensive view of
workloads and result in a more methodical design process. Many
techniques from the compiler community can be applied to HLS
tools and improve the design process; applying machine learning
techniques is one of these approaches [5].

3.2 Interdisciplinary Research and Evaluation Considering
the recent development in the field, it is crucial for the community
to recognize that when evaluating work that contains ideas from
a variety of fields, that the novelty of the work comes from the
combination of these ideas for a novel problem, and it is fine if the
individual ideas have been published before for other problems.
Traditional venues in the Computer Architecture, CAD/EDA, and
FPGA communities have different standards and focuses in the
review process. A new research track for accelerators, including de-
sign methodologies, design tools, and accelerators’ systems, needs
to be a research focus group on its own with its standards. For ex-
ample, the FPGA community is more focused on sharing datapaths
rather than the idea of ASIC like hardware of Shared Accelerators.
In comparison, the computer architecture wanted more evidence
of the implementation and was skeptical of our references from
the compiler community for using ASTs to find commonalities be-
tween source-codes. Or, at minimum, related communities need to
be educated on the concerns of accelerator research and how to
evaluate interdisciplinary and cross-cutting work properly.

Improving HLS with Shared Accelerators: A Retrospective LATTE ’21, April 15, 2021, Virtual, Earth

REFERENCES
[1] Y. Choi, P. Zhang, P. Li, and J. Cong. 2017. HLScope+,: Fast and accurate perfor-

mance estimation for FPGA HLS. In 2017 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). 691–698. https://doi.org/10.1109/ICCAD.2017.
8203844

[2] K. Georgopoulos, G. Chrysos, P. Malakonakis, A. Nikitakis, N. Tampouratzis, A.
Dollas, D. Pnevmatikatos, and Y. Papaefstathiou. 2016. An evaluation of vivado
HLS for efficient system design. In 2016 International Symposium ELMAR. 195–199.
https://doi.org/10.1109/ELMAR.2016.7731785

[3] Rachit Nigam, Sachille Atapattu, Samuel Thomas, Zhijing Li, Theodore Bauer,
Yuwei Ye, Apurva Koti, Adrian Sampson, and Zhiru Zhang. 2020. Predictable

Accelerator Design with Time-Sensitive Affine Types. In Proceedings of the 41st
ACM SIGPLAN Conference on Programming Language Design and Implementation
(London, UK) (PLDI 2020). Association for Computing Machinery, New York, NY,
USA, 393–407. https://doi.org/10.1145/3385412.3385974

[4] B. Reagen, R. Adolf, Y.S. Shao, Gu-Yeon Wei, and D. Brooks. 2014. MachSuite:
Benchmarks for accelerator design and customized architectures. In 2014 IEEE
International Symposium on Workload Characterization (IISWC). 110–119. https:
//doi.org/10.1109/IISWC.2014.6983050

[5] Z. Wang and M. O’Boyle. 2018. Machine Learning in Compiler Optimization. Proc.
IEEE 106, 11 (2018), 1879–1901. https://doi.org/10.1109/JPROC.2018.2817118

https://doi.org/10.1109/ICCAD.2017.8203844
https://doi.org/10.1109/ICCAD.2017.8203844
https://doi.org/10.1109/ELMAR.2016.7731785
https://doi.org/10.1145/3385412.3385974
https://doi.org/10.1109/IISWC.2014.6983050
https://doi.org/10.1109/IISWC.2014.6983050
https://doi.org/10.1109/JPROC.2018.2817118

	Abstract
	1 ReconfAST
	2 Implementation Challenges
	3 Improving Accelerator Design Process
	References

