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ABSTRACT
This paper is a retrospective paper about our previous ICCAD2020
paper, ReconfAST: An Early Stage identification tool to find Shared
Accelerators (SAs). SAs are specialized hardware accelerators that
execute very different software kernels but share the common hard-
ware functions between them. Our early detection methodology
identifies computationally similar and synthesize-able kernels that
are used to build SAs. Ourmethodology, ReconfAST, transforms one
of the compiler’s intermediate output, the Abstract Syntax Trees
(AST)s, into a new clustered AST (CAST) representation that further
removes unneeded nodes and uses a regular expression to match
common node configurations. SAs can provide increased coverage
if both data flow and control flow similarities between - seemingly
very different- workloads are detected. We saw a maximum re-
duction of above 200% in DSP, 75% reduction for LUTs, and 40%
reduction for FFs compared to the smallest Dedicated Accelerators
(DAs) with the best speedup.

In this paper, we briefly explain our tool and discuss some chal-
lenges we experienced in building a tool that designs accelerators
independent of a specific language. One example is the nonintuitive
results HLS generates based on optimized mapping heuristics. We
suggest ways to improve HLS tools and utilize solutions from other
communities to help designers design and evaluate their systems
methodically.

1 RECONFAST
ReconfAST merges ideas from CAD, compiler, and graph theory to
build an early-stage detection tool that identifies synthesize-able
commonalities between seemingly different workloads from dif-
ferent domains that are used to build Shared Accelerators (SAs).
Each SA resembles an ASIC implementation of one software kernel
but can accelerate two or more distinctly different kernels. Figure 1
shows a simplified example of a system with accelerators for two
MachSuite benchmarks, Stencil2D and Viterbi. Instead of building
a separate Dedicated-Accelerator for each kernel, a single shared
accelerator includes hardware for both kernels. Our automated
ReconfAST identifies hardware the kernels have in common (a loop
with an array multiplication and accumulation in this case) from ap-
plication source code [4]. Figure 2 shows our methodology in more
detail. We build our tool based on the front-end of the llvm-clang
suit. Clang is used to generate the ASTs. All the workloads in our
paper are written in C/C++, but the tool can support OpenCL and
some functional languages. Our tool transforms ASTs into the CAST
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Figure 1: Improving workload coverage and area effi-
ciency in many-accelerator systems with Shared Accelera-
tors (SAs).
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Figure 2: The ReconfAST methodology.

representations using python transformation scripts. The CAST of
each workload is fed into a subgraph isomorphism, the VF2 library.
VF2 (or other algorithms for graph isomorphism) has not been, to
the best of our knowledge, ever applied to ASTs for use in high-level
HLS hardware identification. We then validate the methodology
by measuring the dynamic coverage using Valgrind/Callgrind and
then analyze the hardware with Vivado HLS.

The main challenge we encountered was learning the heuris-
tics that HLS tools use and excluding non-Pareto optimal results
from our implementations to study our hypothesis. Including a full
sweep of results reveals nonintuitive trends which baffles review-
ers, resulting in rejection of our work. Over the past few years,
there have been studies on unpredictable HLS heuristics, and some
optimizations have been suggested [1],[2],[3].

2 IMPLEMENTATION CHALLENGES
Although HLS tools have made considerable strides in recent years,
they should be improved further to employ best practices from
other communities such as compilers and EDA. For example, loop
unrolling in compilers has long been optimized with heuristics
that evaluate the cost and benefits of different unrolling factors.
However, the HLS tools rely on the designer to discard inefficient
designs [3]. When developing ReconfAST we struggled with the
unpredictable nature of the mapping heuristic in HLS-based tools.
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Figure 3: Change in area utilization normalized to the cost of
the sum of the DAs with smallest number of DSPs; Speedup
is calculated with respect to the Dedicated Accelerator

Figure 3 shows a partial comparison of SAs to the sum of their
respective dedicated accelerators, where in some cases, the SA’s
speedup is considerably better than the DA and for not much in-
crease in resource usage. All SAs have been normalized to the
dedicated accelerator with the best speedup and smallest footprint
on FPGA.

Figure 4 shows the effects optimizations have on different snip-
pets of code like different 𝑙𝑜𝑜𝑝𝑖 where 𝑖 ∈ (1, 2, 3, ..., 5) in bbgemm.
We observed nonintuitive results for the stencil2d-bbgemm and
viterbi-bbgemm SAwhen one workload (bbgemm) engulfs the other
(viterbi). Further analysis showed similar patterns in SAs are di-
rectly linked to the size of the common subset of two workloads,
data dependency, and whether the common subset is a large per-
centage of the workloads’ total execution time. By designing about
10,000 accelerators, we noticed that the most critical factor in find-
ing SAs with good speedup and efficient resource usage is the
absence of data dependencies.

3 IMPROVING ACCELERATOR DESIGN
PROCESS

Like any relatively new research area, the accelerator design process
can improve in many aspects. In our opinion, research in this area is
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Figure 4: BBgemm dedicated accelerator optimizations af-
fect on speedup and area (FFs) based on different loops (1..5)

hindered by the lack of 1) predictable and transparent tools; and 2) a
research community respects and knows how to evaluate research
that bisects traditional disciplines.

3.1 Improving Toolchains Toolchains for HLS designs are un-
predictable because they do not include information that designers
take into account while designing at RTL. We noticed that static
analysis of HLS benchmarks, profilers like Valgrind, and compil-
ers (such as Clang’s) front-end intermediate outputs, i.e., Abstract
Syntax Trees and DAGs provide a more comprehensive view of
workloads and result in a more methodical design process. Many
techniques from the compiler community can be applied to HLS
tools and improve the design process; applying machine learning
techniques is one of these approaches [5].

3.2 Interdisciplinary Research and Evaluation Considering
the recent development in the field, it is crucial for the community
to recognize that when evaluating work that contains ideas from
a variety of fields, that the novelty of the work comes from the
combination of these ideas for a novel problem, and it is fine if the
individual ideas have been published before for other problems.
Traditional venues in the Computer Architecture, CAD/EDA, and
FPGA communities have different standards and focuses in the
review process. A new research track for accelerators, including de-
sign methodologies, design tools, and accelerators’ systems, needs
to be a research focus group on its own with its standards. For ex-
ample, the FPGA community is more focused on sharing datapaths
rather than the idea of ASIC like hardware of Shared Accelerators.
In comparison, the computer architecture wanted more evidence
of the implementation and was skeptical of our references from
the compiler community for using ASTs to find commonalities be-
tween source-codes. Or, at minimum, related communities need to
be educated on the concerns of accelerator research and how to
evaluate interdisciplinary and cross-cutting work properly.
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