
Compiler Infrastructure for Specializing Domain-Specific
Memory Templates

Stephanie Soldavini
Politecnico di Milano

Milan, Italy
stephanie.soldavini@polimi.it

Christian Pilato
Politecnico di Milano

Milan, Italy
christian.pilato@polimi.it

ABSTRACT
Specialized hardware accelerators are becoming important for more
and more applications. Thanks to specialization, they can achieve
high performance and energy efficiency but their design is com-
plex and time consuming. This problem is exacerbated when large
amounts of data must be processed, like in modern big data and ma-
chine learning applications. The designer has not only to optimize
the accelerator logic but also produce efficient memory architec-
tures. To simplify this process, we propose a multi-level compilation
flow that specializes a domain-specific memory template to match
data, application, and technology requirements.

1 INTRODUCTION
Domain-specific accelerators are one of the key solutions to con-
tinue increasing performance and efficiency beyond the end of
Moore’s law scaling [2, 3]. These accelerators use only the mini-
mal required resources, consume less power, and compute faster
than general purpose hardware [4]. However, the design of such
components is complex [2].

Modern big data and machine learning applications need to
process huge and potentially distributed data sets with stringent
requirements. Managing these data sets requires a combination of
different solutions to hide the communication latency and exploit
the inherent data parallelism [13]. Researchers proposed accelera-
tors with local caches and private local memories for storing data
on chip, while multiple channels help combine classic DRAM with
non-volatile memories (NVM) for off-chip data. Memory architec-
tures with intelligent data transfers can greatly optimize the
systems but require specialization based on the application [10].

On one side, domain-specific languages like Spatial [5] can ab-
stract memory operations while still being hardware-oriented, but
they miss a complete tool-flow to port software-oriented algorithms
to hardware. High-level synthesis (HLS) is a technology to automat-
ically generate hardware modules starting from high-level descrip-
tions [1, 11] but memory optimization is still an open problem [16].
This line of research proposes a compiler-based approach for op-
timizing the accelerator memories on top of traditional HLS. The
main idea is to use domain-specific annotations to pass useful infor-
mation to the compiler, transform the intermediate representations,
and interface directly with modern HLS tools.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
LATTE ’21, April 15, 2021, Virtual, Earth
© 2021 Copyright held by the owner/author(s).

2 HIGH-LEVEL SYNTHESIS: THE PRESENT
High-level synthesis helps raise the abstraction level and use high-
level, software-like methods for hardware design. Modern high-
level synthesis tools are based on state-of-the-art compilers to ex-
tract a language-agnostic intermediate representation from com-
mon software languages [11]. Using compiler frontends also allows
designers to apply common compiler transformations like constant
propagation, dead-code elimination, and loop transformations. For
example, most HLS tools use the GCC or LLVM compilers to apply
state-of-the-art compiler transformations and extract the resulting
intermediate representation. In the following phase, the HLS engine
determines how to distribute the operations over time (scheduling)
and over the hardware resources (allocation and binding). These
steps determine the hardware architecture of the controller, which
determines the evolution of the circuit in each clock cycle, and
the datapath, which contains the hardware resources and their
interconnections.

Current HLS tools have strong focus on the computational as-
pects, while the surrounding memory architecture is adapted to
merely sustain the required data accesses. In case of data-intensive
applications, the optimizations should focus more on coordinating
memory transfers and accesses, rather than on the actual computa-
tion. To do so, compilers need to integrate, propagate, and expose
more data-related information. If passed to the HLS engine, this
information can help specialize the memory architecture together
with the accelerators.

3 DOMAIN-SPECIFIC MEMORY TEMPLATE
Specialized architectures are designed specifically for an accelerator,
but the process is time consuming and must be done for each new
design. Domain-specific architectures are more general since the
structure can be reused across multiple applications, sacrificing
performance. For the memory aspects of a hardware accelerator,
we propose an approach in between, using a domain-specific
template that allows the specialization of particular components.

The lower part of Figure 1 shows the proposed template. It is
composed of existing memory primitives, like caches, DMA en-
gines, prefetchers, and multi-port memories. Based on given area
constraints, only part of the data can stay on chip, while the rest
is stored in DRAM or non-volatile memories (either on the same
device or remotely). On-chip data are stored in different memories
based on the application data structures but also the type of accesses
that are expected. Irregular accesses can be implemented with cus-
tom latency-insensitive memory architectures [9]. Data with
regular accesses can be stored in fixed-latency private local mem-
ories (PLMs) and customized with multi-bank configurations to
expose a large number of ports to the accelerator logic. Data reuse



LATTE ’21, April 15, 2021, Virtual, Earth Stephanie Soldavini and Christian Pilato

buffers can remove unnecessary data transfers. Data accesses with
a certain degree of locality can benefit from architectures featuring
caches that are local or shared with the processor by means of a
coherent protocol [7, 18]. We also feature a direct-memory ac-
cess (DMA) engine to make the data transfers more efficient and a
prefetcher to anticipate known data transfers to hide the communi-
cation latency. These IP blocks can be augmented with special func-
tions, like data protection (e.g., encryption) or application-specific
transformations (e.g., matrix transpose).

This template is general enough to be reused across multiple
applications but it can also be specialized based on the accelerator
characteristics. For instance, we can vary the number of ports on a
multi-bank memory based on the specific access patterns of the ap-
plication. Also, components can be removed if they are unnecessary
for the application. For example, if the data resides entirely on-chip,
the prefetcher can be removed or if there is only a single memory,
the multi-channel controller can be simplified. We propose to use a
compiler-based approach to progressively refine such template.

4 SPECIALIZATION OF THE MEMORY
TEMPLATE

To achieve better performance and reduce costs, designers can
specialize the memory template based on the given accelerator. For
this, our approach is based on the idea of platform-based design [17],
where the memory template is refined in different stages, starting
from the general organization of the data in memory to the actual
interaction with the actual accelerator. The upper part of Figure 1
shows our compiler-based customization flow.
Intermediate Representation. The compiler infrastructure will
need to include more hardware-related information. We target
novel multi-level representations, like MLIR [6], to include more
hardware-related information early in the compilation flow to make
progressive refinements of the architecture at proper levels of ab-
straction. A novel flow is required because existing approaches
are not fully compatible with HLS. CIRCT [19] proposes MLIR ex-
tensions for low-level hardware synthesis (below the HLS level).
Calyx [12] follows, instead, a different approach with a novel IR and
associated compiler. SODA [8] proposes a MLIR-based synthesis
framework for machine learning accelerators with more focus on
the computational aspects.
Compilation Flow. We extend the LLVM-MLIR compilation flow
with additional passes to include memory-related information and
transform the IR accordingly. Our passes include solutions to define
the data layout, size the physical memories (both caches and PLMs),
optimize the access patterns, and create multi-port PLMs for fast
access. Currently, we use custom generators like Mnemosyne1 to
derive the HDL descriptions from such information. We will also
investigate the possibility to interface directly with MLIR formats
for hardware, like CIRCT.

The customization flow shown at the top of Figure 1 would
proceed as follows: At the highest abstraction level, the data or-
ganization phase analyzes the data representations to determine
the coarse memory structure, i.e. deciding which data are stored
off-chip or on-chip. The next step, the layout phase, reorganizes

1http://github.com/chrpilat/mnemosyne

External Memory

Accelerator

Logic to Resolve Addr
and Reduce Delay

Cache

DMA

Prefetcher

Multi-Channel
Controller

DRAM

NVM

Remote

PLM PLM

Multi port
(based on access

patterns)

Data Org Layout Communication
Local Par-
titioning HLS

MLIR

HDL

Intelligent Memory Logic
(Latency Insensitive)

Direct Access Memory
(Fixed Latency)

Figure 1: Multi-level compilation flow for the specialization
of domain-specific memory architectures.

the computation to better exploit local memories (either caches or
PLMs). Then, in the communication phase, the prefetcher is con-
figured to hide transfer latency based on the data access patterns.
After this, the local partitioning phase determines the multi-bank
PLM architecture, also sharing physical memories for data with
disjoint lifetimes [16]. Finally, the HLS phase generates the compu-
tation part of the component with traditional HLS, producing the
complete syntesizable description of the accelerator.
Accelerator Logic HLS. With our approach, the accelerator is de-
signed only at the end of the flow according to the resultingmemory
organization. The accelerator features state-of-the-art solutions for
memory management (e.g., dynamic address resolution [14, 15]).
The accelerator is mostly unaware of the data organization and
layout since the IR has been already updated based on the memory
transformations. It is only optimized to efficiently access the data
with fixed or unbounded latency. This part can leverage existing
HLS tools that start from low-level intermediate representations.
For example, the final LLVM IR representation can be directly in-
terfaced with the Xilinx Vitis HLS front-end2.

5 CONCLUSION
We described a novel approach for specializing domain-specific
memory templates during the compilation flow and before high-
level synthesis of the accelerator logic. Starting from a high-level
memory template, we apply a multi-level compilation flow based on
MLIR that progressively refines the memory architecture and then
interfaces with commercial HLS tools. Our approach borrows idea
from platform-based design, trading off flexibility and specialization
based on specific needs of the designers.

ACKNOLEDGEMENTS
This project is partially funded by the EU Horizon 2020 Programme
under grant agreement No 957269 (EVEREST).

2https://github.com/Xilinx/HLS



Compiler Infrastructure for Specializing Domain-Specific Memory Templates LATTE ’21, April 15, 2021, Virtual, Earth

REFERENCES
[1] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang. 2011. High-

Level Synthesis for FPGAs: From Prototyping to Deployment. IEEE Transactions
on CAD of Integrated Circuits and Systems 30, 4 (2011), 473–491.

[2] W. J. Dally, Y. Turakhia, and S. Han. 2020. Domain-Specific Hardware Accelerators.
Comm. of the ACM 63, 7 (July 2020), 48–57.

[3] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger. 2012.
Dark Silicon and the End of Multicore Scaling. IEEE Micro 32 (2012), 122–134.
Issue 3.

[4] M. Horowitz. 2014. 1.1 Computing’s energy problem (and what we can do about
it). Proceedings of the IEEE International Solid-State Circuits Conference Digest of
Technical Papers (ISSCC), 10–14.

[5] D. Koeplinger, M. Feldman, R. Prabhakar, Y. Zhang, S. Hadjis, R. Fiszel, T. Zhao,
L. Nardi, A. Pedram, C. Kozyrakis, and K. Olukotun. 2018. Spatial: A Language
and Compiler for Application Accelerators. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI).

[6] C. Lattner, M. Amini, U. Bondhugula, A. Cohen, A. Davis, J. Pienaar, R. Riddle, T.
Shpeisman, N. Vasilache, and O. Zinenko. 2020. MLIR: A Compiler Infrastructure
for the End of Moore’s Law. arXiv:2002.11054

[7] P. Mantovani, D. Giri, G. Di Guglielmo, L. Piccolboni, J. Zuckerman, E. G. Cota,
M. Petracca, C. Pilato, and L. P. Carloni. 2020. Agile SoC Development with Open
ESP. In Proceedings of the ACM/IEEE International Conference on Computer-Aided
Design (ICCAD).

[8] M. Minutoli, V. G. Castellana, C. Tan, J. Manzano, V. Amatya, A. Tumeo, D.
Brooks, and G. Y. Wei. 2020. SODA: a New Synthesis Infrastructure for Ag-
ile Hardware Design of Machine Learning Accelerators. In Proceedings of the
IEEE/ACM International Conference On Computer-Aided Design (ICCAD).

[9] M. Minutoli, V. G. Castellana, A. Tumeo, M. Lattuada, and F. Ferrandi. 2016.
Enabling the High Level Synthesis of Data Analytics Accelerators. In Proceedings
of the IEEE/ACM/IFIP International Conference on Hardware/Software Codesign
and System Synthesis (CODES+ISSS).

[10] O. Mutlu. 2020. Intelligent Architectures for Intelligent Machines. Proceedings
of the IEEE International Symposium on VLSI Design, Automation and Test (VLSI-
DAT).

[11] R. Nane, V.-M. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T. Chen, H. Hsiao, S.
Brown, F. Ferrandi, J. Anderson, and K. Bertels. 2016. A Survey and Evaluation of
FPGA High-Level Synthesis Tools. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 35, 10 (Oct. 2016), 1591–1604.

[12] R. Nigam, S. Thomas, Z. Li, and A. Sampson. 2021. A Compiler Infrastructure for
Accelerator Generators. In Proceedings of ACM SIGPLAN Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS).

[13] C. Pilato, S. Bohm, F. Brocheton, J. Castrillon, R. Cevasco, V. Cima, R. Cmar, D.
Diamantopoulos, F. Ferrandi, J. Martinovic, G. Palermo, M. Paolino, A. Parodi, L.
Pittaluga, D. Raho, F. Regazzoni, K. Slaninova, and C. Hagleitner. 2021. EVEREST:
A design environment for extreme-scale big data analytics on heterogeneous
platforms. In Proceedings of the ACM/IEEE Design, Automation & Test in Europe
Conference & Exhibition (DATE).

[14] C. Pilato and F. Ferrandi. 2013. Bambu: A modular framework for the high level
synthesis of memory-intensive applications. Proceedings of the IEEE International
Conference on Field programmable Logic and Applications (FPL).

[15] C. Pilato, F. Ferrandi, and D. Sciuto. 2011. A Design Methodology to Implement
Memory Accesses in High-level Synthesis. Proceedings of the IEEE/ACM/IFIP
International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS).

[16] C. Pilato, P. Mantovani, G. Di Guglielmo, and L. P. Carloni. 2017. System-Level
Optimization of Accelerator Local Memory for Heterogeneous Systems-on-Chip.
IEEE Transactions on CAD of Integrated Circuits and Systems 36, 3 (2017), 435–448.

[17] A. Sangiovanni-Vincentelli and G. Martin. 2001. Platform-Based Design and
Software Design Methodology for Embedded Systems. IEEE Design & Test 18, 6
(Nov. 2001), 23–33.

[18] Y. S. Shao, S. L. Xi, V. Srinivasan, G.-Y. Wei, and D. Brooks. 2016. Co-Designing
Accelerators and SoC Interfaces Using Gem5-Aladdin. In Proceedings of the Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO).

[19] A. Wilson, S. Neuendorffer, and C. Lattner. 2020. CIRCT: Circuit IR Compilers
and Tools. https://github.com/llvm/circt.

https://arxiv.org/abs/2002.11054

	Abstract
	1 Introduction
	2 High-Level Synthesis: The Present
	3 Domain-Specific Memory Template
	4 Specialization of the Memory Template
	5 Conclusion
	References

