
A Position on Program Synthesis for Processor Development
Zachary D. Sisco

University of California, Santa Barbara

USA

Jonathan Balkind

University of California, Santa Barbara

USA

Timothy Sherwood

University of California, Santa Barbara

USA

Ben Hardekopf

University of California, Santa Barbara

USA

ABSTRACT
Program synthesis is a programming-languages technique not of-

ten seen in hardware design. However, hardware designs, and pro-

cessors in particular, contain characteristics that match well with

problems solved using program synthesis. We can use specifica-

tions as oracles to guide program synthesis and generate correct-

by-construction HDL code. The hierarchical structure of hardware

lends itself to “sketching”, or partial implementations, where compo-

nents can be solved individually. CEGIS-based synthesis techniques,

which use SMT solvers, are a natural match for modeling netlists

and RTL designs using the theory of bitvectors. We are exploring

different directions in applying and adapting program synthesis for

processor development. Presented as preliminary work in this posi-

tion paper, we use program synthesis techniques to generate HDL

code that implements the control logic for a sketch of a processor’s

datapath. There are a number of challenges to address such as scal-

ing program synthesis tools to handle real-world hardware designs,

and adapting tools to reason about “hardware semantics”. Over-

coming these challenges we argue program synthesis should be

particularly beneficial to processor and hardware accelerator devel-

opment, speeding up development time to keep pace with changes

in specifications and microarchitecture-level optimizations.

1 OVERVIEW
Advances in program synthesis have been used to great success in

software settings including code repair [6, 11, 13, 15], data wran-

gling (e.g., Excel FlashFill) [7], compiler superoptimization [8, 12,

14], graphics [9, 10], and more. These settings often center around

domain-specific languages and tools that benefit from program

synthesis. However, the domain of hardware design, driven by

hardware description languages (HDLs), has received little atten-

tion from program synthesis (see [1, 3] for sketch-based Verilog

code generation). We argue in this position paper that hardware de-

signs, and processors in particular, have characteristics that match

well with the kinds of problems solved using program synthesis.

Further, we present preliminary work that exploits these charac-

teristics by synthesizing HDL code that implements the control

logic for a partial implementation of a processor. We present three

characteristics:

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

LATTE ’22, March 1, 2022, Virtual, Earth
© 2022 Copyright held by the owner/author(s).

Ubiquity of Specifications. Program synthesis requires some sort

of specification to encode user intent and guide the search prob-

lem. Specifications range from formal (rigorous, mathematical or

logical descriptions of behavior) to informal (sets of input-output

examples). In software settings, where formal specifications are

few, example-driven synthesis is common, but suffers from impreci-

sion and overfitting. Hardware designs, however, are often already

specified. Further, constituent components of the system also gen-

erally have behavioral specifications to describe how they fit into

the entire system. We can leverage these existing specifications in

program synthesis tools as oracles to generate HDL code that is

correct-by-construction.

Hierarchical structure. Hardware naturally lends itself to hierarchi-

cal, structured components. As mentioned in the previous point,

existing specifications also define the interfaces between these com-

ponents. “Program sketches” (or partial implementations) are a

common technique in program synthesis that allow pieces of the

code to remain unknown or unspecified, to be later filled in by

synthesis. Given the natural composability of hardware designs,

program sketches in HDL code can help program synthesis scale.

Development Lifetime. Hardware designs are often modified and

updated over their development lifetimes. For example, for SoC de-

signs, changes to ISA, or microarchitecture-level optimizations can

have non-local effects that permeate through the entire design and

require exhaustive refactoring and verification. Program synthesis

can alleviate these pains through automatically generating HDL

code according to the updated specification with the guarantee that

the changes are correct.

Given the relatively small adoption of program synthesis in the

hardware design space, there are a number of challenges to adapt

program synthesis to processor development.

Scalability. While this is already a well-known problem in the soft-

ware world [4], program synthesis for HDL code has unique issues

to contend with for scalability. The common artifact of HDL code

is a netlist. For real-world hardware designs, netlists contain large

orders of wires and gates. Modeling each and every component is

intractable. Where the software world has seen success in program

synthesis through domain-specific applications, similarly we find

that specific classes of problems in hardware design necessitate spe-

cific solutions from program synthesis. Such solutions may call for

intermediate representations or abstracted models of the hardware

in order to scale.

Hardware semantics. Synthesizing HDL code requires reasoning

about different models of computation compared to software. We



LATTE ’22, March 1, 2022, Virtual, Earth Zachary D. Sisco, Jonathan Balkind, Timothy Sherwood, and Ben Hardekopf

𝑖𝑚𝑒𝑚[𝑝𝑐] = “LOAD addr” 𝑎𝑐𝑐 ′ = 𝑑𝑚𝑒𝑚[addr]
(𝑝𝑐, 𝑎𝑐𝑐, 𝑖𝑚𝑒𝑚,𝑑𝑚𝑒𝑚) → (𝑝𝑐 + 1, 𝑎𝑐𝑐 ′, 𝑖𝑚𝑒𝑚,𝑑𝑚𝑒𝑚)

Load

𝑖𝑚𝑒𝑚[𝑝𝑐] = “ADD addr” 𝑎𝑐𝑐 ′ = 𝑎𝑐𝑐 + 𝑑𝑚𝑒𝑚[addr]
(𝑝𝑐, 𝑎𝑐𝑐, 𝑖𝑚𝑒𝑚,𝑑𝑚𝑒𝑚) → (𝑝𝑐 + 1, 𝑎𝑐𝑐 ′, 𝑖𝑚𝑒𝑚,𝑑𝑚𝑒𝑚)

Add

𝑖𝑚𝑒𝑚[𝑝𝑐] = “STORE addr” 𝑑𝑚𝑒𝑚′ = 𝑑𝑚𝑒𝑚[addr ↦→ 𝑎𝑐𝑐]
(𝑝𝑐, 𝑎𝑐𝑐, 𝑖𝑚𝑒𝑚,𝑑𝑚𝑒𝑚) → (𝑝𝑐 + 1, 𝑎𝑐𝑐, 𝑖𝑚𝑒𝑚,𝑑𝑚𝑒𝑚′)

Store

𝑖𝑚𝑒𝑚[𝑝𝑐] = “BRZ addr” 𝑎𝑐𝑐 = 0 𝑝𝑐 ′ = addr

(𝑝𝑐, 𝑎𝑐𝑐, 𝑖𝑚𝑒𝑚,𝑑𝑚𝑒𝑚) → (𝑝𝑐 ′, 𝑎𝑐𝑐, 𝑖𝑚𝑒𝑚,𝑑𝑚𝑒𝑚)
BranchZero-T

𝑖𝑚𝑒𝑚[𝑝𝑐] = “BRZ addr” 𝑎𝑐𝑐 ≠ 0

(𝑝𝑐, 𝑎𝑐𝑐, 𝑖𝑚𝑒𝑚,𝑑𝑚𝑒𝑚) → (𝑝𝑐 + 1, 𝑎𝑐𝑐, 𝑖𝑚𝑒𝑚,𝑑𝑚𝑒𝑚)
BranchZero-F

Figure 1: Operational semantics for the instructions for an
accumulator-style ISA.

need to adapt program synthesis tools to reason about hardware se-

mantics (models of hardware), deal with high degrees of parallelism,

statefulness, and timing.

2 PRELIMINARYWORK
Consider a scenario where we have a specification for an ISA, and

an implementation of a processor’s datapath. With the datapath in

place, the remaining unknown in the implementation is the control

logic. We show that with these two pieces (an ISA specification and

a datapath sketch), we can leverage program synthesis techniques

to automatically generate the control logic for this processor.

For conciseness, we adapt a minimal, accumulator-style ISA

from [16]. It has four instructions: LOAD addr, ADD addr, STORE
addr, and BRZ addr. The state includes an accumulator register

(𝑎𝑐𝑐), program counter (𝑝𝑐), instruction memory (𝑖𝑚𝑒𝑚), and data

memory (𝑑𝑚𝑒𝑚). We present the operational semantics for the

instructions in Figure 1.

We can extract ISA instruction semantics from a formal specifi-

cation written in a language like Sail [2], which lets programmers

define ISA instructions functionally. We use these definitions to

extract the goals needed for program synthesis. The semantics of

the instructions are agnostic to the actual implementation of the

processor. This kind of specification is higher level than a microar-

chitectural specification and more detached from the RTL, but as

we will show is sufficient for program synthesis to generate HDL

code for the processor’s control logic

The second piece is a partial implementation, or sketch, of the

processor for this ISA. Let’s assume that the developer implemented

the datapath for a single-cycle version of the processor with the

HDL code shown in Figure 2. This implementation is a sketch be-

cause we introduce “holes” (denoted by ??) for the definitions of the
control signals (lines 9–13). These holes will be filled in by program

synthesis.

The goal now is, for each instruction in the ISA, to determine

how the control signals should be set in order to correctly execute

the instruction, then generate the HDL code that implements the

control logic. To accomplish this we symbolically evaluate the pro-

cessor sketch to find values for the control signals that hold under

�
1 # fetch
2 inst <<= imem[pc]
3

4 # decode
5 op <<= inst[0:2]
6 addr <<= inst[2:].zero_extended(32)
7

8 # control logic
9 add <<= ??(op)
10 branch <<= ??(op)
11 write_acc <<= ??(op)
12 read_mem <<= ??(op)
13 write_mem <<= ??(op)
14

15 with conditional_assignment:
16 with read_mem:
17 read_data |= dmem[addr]

18

19 with conditional_assignment:
20 with write_acc:
21 with add:
22 acc.next |= read_data + acc
23 with otherwise:
24 acc.next |= read_data
25

26 with conditional_assignment:
27 with write_mem:
28 dmem[addr] |= acc
29

30 with conditional_assignment:
31 with (acc == 0) & branch:
32 pc.next |= addr
33 with otherwise:
34 pc.next |= pc + 1� �

Figure 2: Sketch of the datapath for the accumulator-style
ISA as a single-cycle processor, written in the Python-based
HDL PyRTL [5].

the constraints given by each ISA instruction. For instance, to exe-

cute an ADD instruction, the control signals read_mem, write_acc
and add must be asserted.

Our prototype lifts the HDL code sketch to a solver-aided IR. This

IR symbolically evaluates the hardware design into constraints in

the theory of bitvectors. For program synthesis we use Rosette [17],

a framework for solver-aided programming. With the instruction

semantics from Figure 1 we can generate preconditions and post-

conditions to guide program synthesis. We define pre- and post-

conditions only over the ISA-level state so that synthesis goals

are agnostic to the microarchitecture and RTL implementation de-

tails. For example, the precondition for ADD asserts that the current

instruction is an ADD opcode. The postcondition asserts that the

accumulator register updates to be the sum of the current value in

𝑎𝑐𝑐 with the value in data memory at address addr.
Running the symbolic evaluation process for all four instructions

we generate the control logic. First, our immediate result is a table

of control signal values according to opcode. From this table, we

can generate the following HDL code that implements the control

logic:�
add <<= (op == ADD)
branch <<= (op == BRZ)
write_acc <<= (op == ADD) ^ (op == LOAD)
read_mem <<= (op == ADD) ^ (op == LOAD)
write_mem <<= (op == STORE)� �

Our prototype supports continual development. Using our tech-

nique we synthesized multiple implementations of the accumulator

processor’s control logic for three different microarchitectures (one

single-cycle, two multi-cycle)—all using the same high-level ISA

specification.

We are extending our preliminary work to synthesize the com-

plete control logic for a RISC-V processor given a Sail specification

for the ISA. It currently supports a subset of the RV32I ISA for a

single-cycle datapath. To showcase our work on practical designs

we are extending our prototype to handle pipelining and more ad-

vanced microarchitecture features found in modern processors and

accelerators.



A Position on Program Synthesis for Processor Development LATTE ’22, March 1, 2022, Virtual, Earth

REFERENCES
[1] Armaiti Ardeshiricham, Yoshiki Takashima, Sicun Gao, and Ryan Kastner. 2019.

VeriSketch: Synthesizing Secure Hardware Designs with Timing-Sensitive In-

formation Flow Properties. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security (London, United Kingdom) (CCS
’19). Association for Computing Machinery, New York, NY, USA, 1623–1638.

https://doi.org/10.1145/3319535.3354246

[2] Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Alastair Reid, Kathryn E.

Gray, Robert M. Norton, Prashanth Mundkur, Mark Wassell, Jon French, Christo-

pher Pulte, Shaked Flur, Ian Stark, Neel Krishnaswami, and Peter Sewell. 2019.

ISA Semantics for ARMv8-A, RISC-V, and CHERI-MIPS. In Proc. 46th ACM SIG-
PLAN Symposium on Principles of Programming Languages. https://doi.org/10.

1145/3290384 Proc. ACM Program. Lang. 3, POPL, Article 71.

[3] A. Becker, D. Novo, and P. Ienne. 2014. SKETCHILOG: Sketching combinational

circuits. In 2014 Design, Automation Test in Europe Conference Exhibition (DATE).
1–4. https://doi.org/10.7873/DATE.2014.165

[4] James Bornholt and Emina Torlak. 2018. Finding Code That Explodes under

Symbolic Evaluation. Proc. ACM Program. Lang. 2, OOPSLA, Article 149 (Oct.
2018), 26 pages. https://doi.org/10.1145/3276519

[5] J. Clow, G. Tzimpragos, D. Dangwal, S. Guo, J. McMahan, and T. Sherwood. 2017.

A pythonic approach for rapid hardware prototyping and instrumentation. In

2017 27th International Conference on Field Programmable Logic and Applications
(FPL). 1–7. https://doi.org/10.23919/FPL.2017.8056860

[6] Loris D’Antoni, Roopsha Samanta, and Rishabh Singh. 2016. Qlose: Program

Repair with Quantiative Objectives. In 27th International Conference on Com-
puter Aided Verification (CAV 2016) (27th international conference on computer

aided verification (cav 2016) ed.). https://www.microsoft.com/en-us/research/

publication/qlose-program-repair-with-quantiative-objectives/

[7] Sumit Gulwani. 2011. Automating String Processing in Spreadsheets Using Input-

Output Examples. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (Austin, Texas, USA) (POPL
’11). Association for Computing Machinery, New York, NY, USA, 317–330. https:

//doi.org/10.1145/1926385.1926423

[8] Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkatesan. 2011.

Synthesis of Loop-Free Programs. In Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation (San Jose, Cali-

fornia, USA) (PLDI ’11). Association for Computing Machinery, New York, NY,

USA, 62–73. https://doi.org/10.1145/1993498.1993506

[9] Sumit Gulwani, Vijay Anand Korthikanti, and Ashish Tiwari. 2011. Synthesizing

Geometry Constructions. In Proceedings of the 32nd ACM SIGPLAN Conference on
Programming Language Design and Implementation (San Jose, California, USA)

(PLDI ’11). Association for Computing Machinery, New York, NY, USA, 50–61.

https://doi.org/10.1145/1993498.1993505

[10] Brian Hempel and Ravi Chugh. 2016. Semi-Automated SVG Programming via Di-

rect Manipulation. In Proceedings of the 29th Annual Symposium on User Interface
Software and Technology (Tokyo, Japan) (UIST ’16). Association for ComputingMa-

chinery, New York, NY, USA, 379–390. https://doi.org/10.1145/2984511.2984575

[11] Barbara Jobstmann, Andreas Griesmayer, and Roderick Bloem. 2005. Program

Repair as a Game. In Proceedings of the 17th International Conference on Computer
Aided Verification (Edinburgh, Scotland, UK) (CAV’05). Springer-Verlag, Berlin,
Heidelberg, 226–238. https://doi.org/10.1007/11513988_23

[12] Rajeev Joshi, Greg Nelson, and Keith Randall. 2002. Denali: A Goal-Directed

Superoptimizer. In Proceedings of the ACM SIGPLAN 2002 Conference on Pro-
gramming Language Design and Implementation (Berlin, Germany) (PLDI ’02).
Association for Computing Machinery, New York, NY, USA, 304–314. https:

//doi.org/10.1145/512529.512566

[13] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chan-

dra. 2013. SemFix: Program Repair via Semantic Analysis. In Proceedings of the
2013 International Conference on Software Engineering (San Francisco, CA, USA)

(ICSE ’13). IEEE Press, 772–781.

[14] Phitchaya Mangpo Phothilimthana, Aditya Thakur, Rastislav Bodik, and Dinakar

Dhurjati. 2016. Scaling up Superoptimization. In Proceedings of the Twenty-First
International Conference on Architectural Support for Programming Languages
and Operating Systems (Atlanta, Georgia, USA) (ASPLOS ’16). Association for

Computing Machinery, New York, NY, USA, 297–310. https://doi.org/10.1145/

2872362.2872387

[15] Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. 2013. Automated

Feedback Generation for Introductory Programming Assignments. In Proceedings
of the 34th ACM SIGPLAN Conference on Programming Language Design and
Implementation (Seattle, Washington, USA) (PLDI ’13). Association for Computing

Machinery, New York, NY, USA, 15–26. https://doi.org/10.1145/2491956.2462195

[16] Mark Smotherman. 2019. A Brief History of Microprogramming. https://people.

cs.clemson.edu/~mark/uprog.html

[17] Emina Torlak and Rastislav Bodik. 2014. A Lightweight Symbolic Virtual Machine

for Solver-Aided Host Languages. SIGPLAN Not. 49, 6 (June 2014), 530–541.

https://doi.org/10.1145/2666356.2594340

https://doi.org/10.1145/3319535.3354246
https://doi.org/10.1145/3290384
https://doi.org/10.1145/3290384
https://doi.org/10.7873/DATE.2014.165
https://doi.org/10.1145/3276519
https://doi.org/10.23919/FPL.2017.8056860
https://www.microsoft.com/en-us/research/publication/qlose-program-repair-with-quantiative-objectives/
https://www.microsoft.com/en-us/research/publication/qlose-program-repair-with-quantiative-objectives/
https://doi.org/10.1145/1926385.1926423
https://doi.org/10.1145/1926385.1926423
https://doi.org/10.1145/1993498.1993506
https://doi.org/10.1145/1993498.1993505
https://doi.org/10.1145/2984511.2984575
https://doi.org/10.1007/11513988_23
https://doi.org/10.1145/512529.512566
https://doi.org/10.1145/512529.512566
https://doi.org/10.1145/2872362.2872387
https://doi.org/10.1145/2872362.2872387
https://doi.org/10.1145/2491956.2462195
https://people.cs.clemson.edu/~mark/uprog.html
https://people.cs.clemson.edu/~mark/uprog.html
https://doi.org/10.1145/2666356.2594340

	Abstract
	1 Overview
	2 Preliminary Work
	References

