
Using CIRCT for FPGA Physical Design
Designing for performance with higher-level models

John Demme
john.demme@microsoft.com

Microsoft, USA

Aaron Landy
aalan@microsoft.com

Microsoft, USA

ABSTRACT

Wire delays dominate the performance of most FPGA de-
signs. Few designers, however, reason about those delays
during initial functional RTL coding, leading to slow designs.
During the “timing closure” phase, they are boxed in by the
microarchitectural decisions they made early on.

We posit that the RTL model is too low level for serious
optimization – that in the modern hardware design world,
we need to specify hardware closer to the architectural level.
Reasoning about constructs like elastic data pipelines, commu-
nication channels, systolic arrays, and FSMs allows compilers
to make meaningful optimization transformations.

To that end, we extend the CIRCT compiler framework to
enable designing hardware which can be compiler optimized
for the physical substrate on which it runs. Using CIRCT
benefitted us through network effects – despite CIRCT’s
youth and being a relatively small network of contributors
which we expect to grow.

1 INTRODUCTION

When writing RTL, the designer must always be cognizant of
the hardware which is going to be created. If the designer fails
to consider the physical implementation and focuses instead
on functional correctness via simulation, the resulting design
is almost guaranteed to miss performance and area targets –
often by drastic amounts. FPGAs, in particular, have limited
and highly structured resources into which designs must
be mapped, making physical design extremely important.
Worse yet, RTL code typically cannot be locally optimized
without affecting correctness. A classic example, pipelining
can require a cascading series of changes, which often result
in “off-by-N-cycles” bugs.

Designs typically start as architectural block diagrams on
a whiteboard. They are then refined gradually until one can
specify the RTL microarchitecture. The architectural level
contains a wealth of information relevant to physical design
that is lost while lowering. Our position is that if the high
level could be specified, a compiler could use that high level
information to better reason about the physical design. We
address this need by adding higher-level constructs to CIRCT
which can reason about placement and pipeline themselves,

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

LATTE ’22, March 1st, 2022, Lausanne, Switzerland

© 2022 Copyright held by the owner/author(s).

replacing the tedious work which often makes the approaches
we discuss infeasible at scale.

2 PLACEMENT FIRST PIPELINING

High-performance FPGA design revolves around deep pipe-
lines. To determine exactly how deep, we’ve had success
reversing the process: physically design first then incremen-
tally add correctness. Early design typically involves floor
planning and running design experiments on “close enough”
subdesigns to gather data on precise placements and other
strategies. Only once a decent set of placements are found,
can we design a properly pipelined microarchitecture.

2.1 Point-to-point connections

Determining the optimal depth of simple connection (based
on the distance between the source and sink) seems simple;
however, (1) FPGAs tend to have heterogenous routing fab-
rics with huge discontinuties, often these must be known
accounted for in estimates. (2) RTL compiler placement en-
gines tend to place pipeline stages nowhere near where you
imagined they’d go, making intuitive latency estimates in-
accurate. We can manually place registers to constrain the
routing as a mitigation. (3) FPGAs contain several wire
classes with wide-ranging propagation delays. For latency-
sensitive connections, we can adjust the pipelining down to
demand use of faster wires. Most other connections can toler-
ate artificially increased pipelining, freeing up fast wires for
other parts of the design.

2.2 Broadcast networks

When the same data must be communicated to multiple
destinations, there exist infinite ways to design the broadcast
structure, as demonstrated in Figure 1. In addition to the
opportunities with point-to-point connections, the crux of
this problem is determining which wires should be shared – its

Figure 1: Broadcast networks (a), (b), and (c) are
balanced, but the (a) wastes registers and (b) wastes
routing resources. (d) is purely systolic and uses
fewer resources at the cost of signal latency.

https://circt.llvm.org
https://circt.llvm.org


LATTE ’22, March 1st, 2022, Lausanne, Switzerland John Demme and Aaron Landy

connectivity. The correct choice isn’t clear without knowing
placements but with them it often becomes plainly apparent.

2.3 Systolic arrays

Despite looking very regular, systolic arrays need only be
logically regular – their placement and scheduling can be very
irregular. They also tend to be used in bandwidth-driven
applications. As such, systolic arrays have many degrees of
freedom in terms of placement and pipelining. If we assume
the PEs’ placements are fixed (for brevity we do), we can
determine the pipeline depth of each connection using the
ideas discussed in 2.1 and/or 2.2.

Figure 2: Where should the PEs of a systolic ar-
ray live on the FPGA? How many cycles of latency
should each connection be given, subject to schedul-
ing constraints? What is the resulting input / output
schedule?

Traditional arrays have scheduling constraints – link la-
tencies need to be coordinated to ensure the horizontal and
vertical data arrive at each PE on the same cycle. Fully
buffered arrays (wherein each PE stores the operands), how-
ever, have no such requirement. In both cases, the schedule
of the inputs and outputs must be computed by the compiler
and given to a contoller1 of some sort. Fortunately, CIRCT
has a very flexible scheduling framework2 which we have just
begun using to check schedule validity and solve for the IO
schedule.

3 CIRCT AND PYCDE

All of the optimizations discussed here are predicated on
compiler awareness of these higher-level constructs, so we
require compiler extensions.

3.1 CIRCT

MLIR (Multi Level Intermediate Representation) allows de-
velopers to easily define Intermediate Representations (called
dialects) in a common format. It provides for progressive “low-
ering” from higher-level dialects to lower-level ones. CIRCT
(Circuit IR Compilers and Tools) is a set of MLIR dialects and
relevant supporting libraries intended for hardware design.
The core dialects represent RTL-level code and are emitted
to SystemVerilog. We’ve added a tcl emitter to specify place-
ments to the RTL compiler and a device database to analyze
and manipulate them.

1Synthesizing physically-aware datapath controllers is also something
we are investigating.
2The CIRCT scheduling library is discussed in another paper in this
workshop.

Mid-level constructs. In the near future, we’ll be adding
constructs to represent higher-level ideas: point-to-point chan-
nels (2.1), broadcast networks (2.2), and systolic arrays (2.3)
to start. CIRCT already has models for (linear) data pipelines
and FSMs which we plan to investigate in the future. We’ll
implement strategies for lowering those higher-level concepts
to both instance placements and scheduled RTL dialects
using the ideas discussed in the previous sections.

High-level specification. While specifying designs at the
granulatity of broadcasts, unscheduled pipelines, systolic ar-
rays, FSMs, et cetera represents a level up for hardware
designers, for some users this is too low level. For those users,
the CIRCT HLS flow3 could take advantage of our physi-
cal design flows. We are actively exploring a lowering from
MLIR’s “affine” dialect to systolic arrays that our physical
design flow can place and schedule efficiently.

Lowering. It is interesting to note the similarity of the
“lowering” approach in CIRCT and the human whiteboard
version. Indeed, they are complimentary: our constructs allow
users to guide (or at first, fully specify) their lowering while
checking for correctness and preserving semantic information.

3.2 PyCDE

We birthed the Python CIRCT Design Entry API as a
strongly opinionated binding to CIRCT. PyCDE’s only job
is to ease surfacing CIRCT constructs to designers, differenti-
ating it from Python HDL projects like Magma and MyHDL
which intend to be Python-based RTL alternatives. Indeed
PyCDE is not yet ideal for specifing any sort of math opera-
tions, preferring instead to act as a glue API, adeptly mixing
externally defined RTL and CIRCT constructs.

Currently, PyCDE fully supports specifying lower-level
CIRCT constructs – RTL level and instance placements – as
well as provides access to the device database. Just these
low-level constructs yield benefit by allowing designers to
easily specify and query placements. As we add mid-level
constructs, we will expose them out through PyCDE for
designers to compose into existing designs.

4 CONCLUSIONS

We’re not far enough down this road to have any “conclusions,”
but our experience thus far justify: (1) High-performance
FPGA designs require some amount of microarchitecture-
-affecting physical design – placements without pipelining
will only get you so far. (2) Verilog and other RTL-level
languages encourage and indeed require brittle code thus
make important optimizations more difficult than necessary –
a specification at a higher level allows the compiler to help
and ensure correctness. (3) Extending CIRCT for physical
design has made realizing our goals vastly easier, provided
unanticipated opportunities for future expansion, and allows
others to easily use (and contribute) to our work. We advise
considering CIRCT for your next compiler project!

3CIRCT HLS is discussed in another paper at this workshop

https://circt.llvm.org
https://github.com/phanrahan/magma
https://myhdl.org/

	Abstract
	1 Introduction
	2 Placement first pipelining
	2.1 Point-to-point connections
	2.2 Broadcast networks
	2.3 Systolic arrays

	3 CIRCT and PyCDE
	3.1 CIRCT
	3.2 PyCDE

	4 Conclusions

