
HLS from PyTorch to System Verilog with MLIR and CIRCT
Mike Urbach

Alloy Computing, LLC
USA

Morten B. Petersen
EPFL

Switzerland

ABSTRACT
Recent work using High-Level Synthesis (HLS) for AI accelerator
design has largely been based on innovations at the frontend level.
These flows often communicate design intent to vendor HLS tools
by generating C++, which can obfuscate high-level information vital
for effective HLS. Using open-source compiler infrastructure, we
have implemented an HLS compiler that explicitly models domain-
specific concepts at every level of abstraction from PyTorch to RTL.
We show the utility of this approach by demonstrating dynamically
and statically scheduled HLS flows that effectively leverage domain-
specific IRs at the appropriate levels of abstraction.

1 INTRODUCTION
We believe one of the core challenges to High-Level Synthesis (HLS)
is its use of languages such as C++ that suffer from the von Neu-
mann bottleneck [1]. Hardware is massively concurrent, but the
von Neumann programming model makes reasoning about the flow
of data between memory and computation difficult. An HLS com-
piler for this programming model faces challenges when analyzing
memory accesses and control flow. These pitfalls can be avoided
by building HLS around languages that capture computations in a
higher level of abstraction than word-at-a-time programming.

Consider the programming models of popular machine learning
(ML) frameworks, taking PyTorch [11] as an example. These capture
dataflow and computation in a truly high-level way: a matrix mul-
tiply is a single function call in the source and a single construct
in the IR. Compare this to C++, where a matrix multiply might
be represented by nested loops, memory accesses, and computa-
tion. Representing domain-specific concepts like matrix multiply
explicitly can convey high-level intent directly to an HLS compiler.

Recent work in high-level programming models for accelerator
design often focuses on frontend transformations, but eventually
generates C++ to communicate hardware design intent to propri-
etary HLS tools [2, 9, 14, 16]. We believe that much can be gained
by rejecting C++ as a de facto IR for HLS in favor of domain-specific
IRs at all stages of compilation. By constructing our HLS compiler
with MLIR [8] and CIRCT [5], we can:

• Capture high-level source information that is vital to achiev-
ing good HLS results.

• Support optimizations at all levels of abstraction from the
ML model to the hardware description.

• Decouple HLS from word-at-a-time programming with com-
piler infrastructure that models domain concepts explicitly.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
LATTE ’22, March 1, 2022, Virtual, Earth
© 2022 Copyright held by the owner/author(s).

We see MLIR as a perfect fit for HLS tooling since it allows
compilers to construct, analyze, and transform domain-specific IRs
within a state-of-the-art compiler infrastructure. Now, we can con-
nect ML frameworks like PyTorch to CIRCT via MLIR and focus on
HLS innovations without reinventing the compiler frontend and
backend. At each compiler stage, domain concepts are modeled ex-
plicitly using open-source representations, unlocking the potential
to optimize, simulate, verify, and extend at each step.

We have developed a compiler stack that explores these ideas.
Specifically, we demonstrate:

• An MLIR-based frontend for PyTorch and the high-level
information it captures.

• A dynamically scheduled backend flow that uses latency-
insensitive components with distributed control.

• A statically scheduled backend flow that computes an FSM
with latency-insensitive control.

• A statically scheduled backend flow that computes an FSM
with pipelined control.

• Example System Verilog generated by the flows.

Having both statically and dynamically scheduled paths allows
us to generate high-performance circuits whether memory access
patterns are affine or not. This work focuses on lowering PyTorch
through well-known abstractions, which we see as a pragmatic first
step with the intent to pave a path for other frontends and novel IRs.
To our knowledge, this is the first fully open-source compiler that
is able to compile ML programs into hardware description language
using MLIR end-to-end, including the hardware description levels.

Linalg

Affine SCF

Standard

StaticLogic Handshake

Calyx FIRRTL

HW /
Comb

Calyx Native

PyTorch TensorFlow

Export 
Verilog 

.sv

Scheduling Sim / Viz

C
IR
C
T

M
LI
R MLIR dialect

CIRCT dialect

DHLS
SHLS (LI)

Tool/library
SHLS (Pipelined)

Figure 1: With MLIR and CIRCT, we convert PyTorch pro-
grams toRTL through either a dynamically scheduled (DHLS)
or statically scheduled (SHLS) flow.



LATTE ’22, March 1, 2022, Virtual, Earth Mike Urbach and Morten B. Petersen

func @mm(%arg0: memref<64xi32>,
    %arg1: memref<64xi32>) �� i32 {
  %0 = affine.for %arg2 = 0 to 64
      iter_args(%arg3 = 0) �� (i32){
    %1 = affine.load %arg0[%arg2]
    %2 = affine.load %arg1[%arg2]
    %3 = arith.muli %1, %2
    %4 = arith.addi %arg3, %3
    affine.yield %4
  }
  return %0 }

func @mm(%arg0:memref<64xi32>,
    %arg1: memref<64xi32>) �� i32 {
  br ^bb1(0, 0)
^bb1(%0: index, %1: i32):
  %2 = arith.cmpi slt, %0, 64
  cond_br %2, ^bb2, ^bb3
^bb2:
  %3 = memref.load %arg0[%0]
  %4 = memref.load %arg1[%0]
  %5 = arith.muli %3, %4
  %6 = arith.addi %1, %5
  %7 = arith.addi %0, 1
  br ^bb1(%7, %6)
^bb3:
  return %1 : i32 }

func @mm(%arg0: memref<64xi32>, %arg1: memref<64xi32>) �� i32 {
  %0 = staticlogic.pipeline.while II = 1
           iter_args(%arg2 = 0, %arg3 = 0) �� i32 {
    %1 = arith.cmpi ult, %arg2, 64
    staticlogic.pipeline.register %1
  } do {
    %1:3 = staticlogic.pipeline.stage {
      %4 = memref.load %arg0[%arg2]
      %5 = memref.load %arg1[%arg2]
      %6 = arith.addi %arg2, 1
      staticlogic.pipeline.register %4, %5, %6}
    %2 = staticlogic.pipeline.stage {
      %4 = arith.muli %1#0, %1#1
      staticlogic.pipeline.register %4 }
    %3 = staticlogic.pipeline.stage {
      %4 = arith.addi %arg3, %2
    staticlogic.pipeline.register %4 }
    staticlogic.pipeline.terminator
      iter_args(%1#2, %3), results(%3) }
  return %0 : i32 }
handshake.func @mm(%arg0: memref<64xi32>, %arg1: memref<64xi32>,
    %arg2: none, ���) �� (i32, none) {
  %0:2 = extmemory[ld = 1, st = 0] (%arg1) ���
  %1:2 = extmemory[ld = 1, st = 0] (%arg0) ���
  %result, %index = control_merge %15, %arg2
  %7 = mux %index#1 [%21, 0]
  %9 = mux %index#0 [%20, 0]
  %12 = arith.cmpi slt, %7#1, 64
  %tr, %fr = cond_br %12#2, %result
  %tr_0, %fr_1 = cond_br %12#1, %7#0
  %tr_2, %fr_3 = cond_br %12#0, %9
  %15 = join %tr#1, %1#1, %0#1
  %dataResult, %addressResults = load [%tr_0#2] %1#0, %tr#2
  %dataResult_4, %addressResults_5 = load [%tr_0#1] %0#0, %tr#0
  %19 = arith.muli %dataResult, %dataResult_4
  %20 = arith.addi %tr_2, %19
  %21 = arith.addi %tr_0#0, 1
  return %fr_3, %fr }

class DotModule(torch.nn.Module):
  def mm(self, a, b):
    return torch.matmul(a, b)

module mm(
  input in0_ldAddr0_ready,
    in0_ldData0_valid,
  input [31:0] in0_ldData0_data,
  input in0_ldDone0_valid,
    in1_ldAddr0_ready, in1_ldData0_valid,
  input [31:0] in1_ldData0_data,
  input in1_ldDone0_valid, inCtrl_valid,
    out0_ready, outCtrl_ready, clock,
    reset,
  output in0_ldAddr0_valid,
  output [31:0] in0_ldAddr0_data,
  output in0_ldData0_ready,
    in0_ldDone0_ready, in1_ldAddr0_valid,
  output [31:0] in1_ldAddr0_data,
  output in1_ldData0_ready,
    in1_ldDone0_ready,
    inCtrl_ready, out0_valid,
  output [31:0] out0_data,
  output outCtrl_valid); ���

torch-mlir lowering, Linalg to Affine

Affine/SCF to Standard
St

an
da

rd
 to

 H
an

ds
ha

ke
 (D

H
LS

)
Af

fin
e 

to
 S

ta
tic

Lo
gi

c 
(S

H
LS

)

H
an

ds
ha

ke
 to

 S
V 

(D
H

LS
)

module mm (
  input logic [31:0] ext_mem0_read_data,
  input logic ext_mem0_done,
  input logic [31:0] ext_mem1_read_data,
  input logic ext_mem1_done,
  input logic clk,
  input logic reset,
  input logic go,
  output logic [31:0] ext_mem0_write_data,
  output logic [31:0] ext_mem0_addr0,
  output logic ext_mem0_write_en,
  output logic [31:0] ext_mem1_write_data,
  output logic [31:0] ext_mem1_addr0,
  output logic ext_mem1_write_en,
  output logic done); ���

St
at

ic
Lo

gi
c 

to
 S

V 
(S

H
LS

)

(i) PyTorch

(ii) MLIR Affine

(iii) MLIR Standard

(v) Handshake IR

(iv) StaticLogic IR

(vii) DHLS .sv

(vi) SHLS .sv

Figure 2: A PyTorch example (i). The input IRs for two backend flows as affine loops (ii) and a CDFG (iii). The mid-level IRs for
each flow as a static pipeline (iv) and a dataflow graph (v). SystemVerilog modules generated by each flow (vi) and (vii).

2 PYTORCH FRONTEND
For example, we will take a program written in Python using Py-
Torch (see Figure 2, Listing i). The torch-mlir [13] compiler infras-
tructure can convert this into MLIR’s Linalg dialect. With upstream
MLIR tooling, we convert Linalg to dialects at the different levels
of abstraction accepted by the backend flows, as shown in Figure 1
and Figure 2, Listings ii and iii. We focus on lowering, but Linalg
also supports transformations like tiling, fusion, and sparsification.

3 DYNAMIC FLOW
In the dynamically scheduled flow, we convert the program to a
CDFG, using MLIR’s Standard dialect. This is then converted to
a dataflow program in the style of Dynamatic [7]. Dataflow is ex-
pressed through the Handshake dialect (see Figure 2, Listing v),
which models compositional elastic circuits with distributed con-
trol [3, 6]. Our stack has been shown to generate substantially
smaller circuits than Dynamatic, by taking advantage of optimiza-
tions in CIRCT at both the dataflow and hardware level [12].

4 STATIC, LATENCY-INSENSITIVE FLOW
In the static, latency-insensitive flow, we convert the program to the
SCF (Structured Control Flow) dialect in MLIR in order to represent
looping and conditional constructs at a higher level of abstraction
than in Section 3. From there, we construct Calyx IR [10], which
captures these abstractions in an explicit schedule. On the backend,
we use the native Calyx compiler to synthesize an FSM and datapath,
using latency-insensitive connections like the dynamic flow.

5 STATIC, PIPELINED FLOW
To leverage more high-level information in the static flow, we con-
vert the program to the Affine dialect in MLIR. The polyhedral
model enables us to enforce structured iterations, capture detailed

memory access dependences using MLIR, and compute an optimal
schedule using CIRCT’s scheduling infrastructure. This is captured
in the StaticLogic dialect as a pipelined while loop IR (see Figure 2,
Listing iv), and can be lowered to Calyx IR as in Section 4. Unlike the
static, latency-insensitive flow, we synthesize a fully static schedule,
which allows the Calyx compiler to optimize the FSM and avoid
generating latency-insensitivity circuitry.

6 CONCLUSION AND FUTUREWORK
We now have three complementary, narrow paths leading from ML
programs to hardware descriptions and can start to widen each
path with more support.

For the dynamic path, we expect to generate higher performance
circuits through new buffering techniques, canonicalizations, and
memory analyses. On the static paths, we plan to support opti-
mizations such as in ScaleHLS [16], AutoSA [15], and others. We
hope to incorporate target specific information and apply design
space exploration to each path. Besides improving each path, we
intend to combine both static and dynamic scheduling, allowing
each to handle parts of the program that they are best suited for,
similar to DASS [4]. We also plan to continue integrating Calyx
with CIRCT to take advantage of CIRCT’s backend optimizations
and code generation.

By building these tools as open-source software, we hope to cre-
ate a center of mass where new HLS innovations can be researched
within a common framework that exposes domain-specific IRs at
every level of the stack.

ACKNOWLEDGEMENTS
We thank Stephen Neuendorffer, Julian Oppermann, Hanchen Ye,
Chris Gyurgyik, Rachit Nigram, Adrian Sampson, and the CIRCT
community for their insightful discussions and contributions.



HLS from PyTorch to System Verilog with MLIR and CIRCT LATTE ’22, March 1, 2022, Virtual, Earth

REFERENCES
[1] John Backus. 1978. Can Programming Be Liberated from the von Neumann Style?

A Functional Style and Its Algebra of Programs. Commun. ACM 21, 8 (Aug 1978),
613–641.

[2] Endri Bezati, Mahyar Emami, Jörn W. Janneck, and James R. Larus. 2021. Stream-
Blocks: A compiler for heterogeneous dataflow computing (technical report).
CoRR abs/2107.09333 (2021). arXiv:2107.09333

[3] Josep Carmona, Jordi Cortadella, Mike Kishinevsky, and Alexander Taubin. 2009.
Elastic circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 28, 10 (2009), 1437–1455.

[4] Jianyi Cheng, Lana Josipović, George A Constantinides, Paolo Ienne, and John
Wickerson. 2021. DASS: Combining Dynamic and Static Scheduling in High-level
Synthesis. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems (2021).

[5] CIRCT. [n.d.]. Circuit IR Compilers and Tools. Online. https://circt.llvm.org
[6] Stephen A Edwards, Richard Townsend, Martha Barker, and Martha A Kim. 2019.

Compositional dataflow circuits. ACM Transactions on Embedded Computing
Systems (TECS) 18, 1 (2019), 1–27.

[7] Lana Josipović, Radhika Ghosal, and Paolo Ienne. 2018. Dynamically sched-
uled high-level synthesis. In Proceedings of the 2018 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays. 127–136.

[8] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis,
Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and Olek-
sandr Zinenko. 2020. MLIR: A compiler infrastructure for the end of Moore’s law.
arXiv preprint arXiv:2002.11054 (2020).

[9] Rachit Nigam, Sachille Atapattu, Samuel Thomas, Zhijing Li, Theodore Bauer,
Yuwei Ye, Apurva Koti, Adrian Sampson, and Zhiru Zhang. 2020. Predictable

accelerator design with time-sensitive affine types. In Proceedings of the 41st
ACM SIGPLAN Conference on Programming Language Design and Implementation.
393–407.

[10] Rachit Nigam, Samuel Thomas, Zhijing Li, and Adrian Sampson. 2021. A com-
piler infrastructure for accelerator generators. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems. 804–817.

[11] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. In Advances in Neural Information Processing Systems 32. 8024–8035.

[12] Morten Borup Petersen. 2022. A Dynamically Scheduled HLS Flow in MLIR.
Master’s thesis. École Polytechnique Fédérale de Lausanne.

[13] torch mlir. [n.d.]. Torch-MLIR Project. Online. https://github.com/llvm/torch-
mlir

[14] Yaman Umuroglu, Nicholas J Fraser, Giulio Gambardella, Michaela Blott, Philip
Leong, Magnus Jahre, and Kees Vissers. 2017. Finn: A framework for fast, scal-
able binarized neural network inference. In Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays. 65–74.

[15] Jie Wang, Licheng Guo, and Jason Cong. 2021. AutoSA: A Polyhedral Com-
piler for High-Performance Systolic Arrays on FPGA. In The 2021 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays. 93–104.

[16] Hanchen Ye, Cong Hao, Jianyi Cheng, Hyunmin Jeong, Jack Huang, Stephen
Neuendorffer, and Deming Chen. 2021. ScaleHLS: Scalable High-Level Synthesis
through MLIR. CoRR abs/2107.11673 (2021). arXiv:2107.11673

https://circt.llvm.org
https://github.com/llvm/torch-mlir
https://github.com/llvm/torch-mlir

	Abstract
	1 Introduction
	2 PyTorch Frontend
	3 Dynamic Flow
	4 Static, Latency-Insensitive Flow
	5 Static, Pipelined Flow
	6 Conclusion and Future Work
	References

