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ABSTRACT
Wemake the case for treating high-level synthesis as amathematical
optimisation problem, and discuss why the CIRCT project could be
the ideal incubator to bring this methodology into future high-level
hardware design tools.

1 INTRODUCTION
CIRCT [5] is an effort to build a toolkit for modern hardware design
tools based on the MLIR compiler framework [16]. The project is
becoming a playground for research into novel high-level synthesis
(HLS) flows, and multiple approaches, both static and dynamic,
are currently under development. In this paper, we focus on static
HLS, and refer the reader to [4] for a discussion of the respective
strengths and weaknesses.

Implementing an HLS engine is a complex engineering challenge.
The MLIR philosophy allows the definition of as many abstraction
levels as needed, and provides powerful infrastructure supporting
iterative lowering conversions between them. This gives CIRCT-
based HLS flows more flexibility, compared to other open state-of-
the-art systems such as Bambu [10] and XLS [12], to experiment
and pick the “right” abstractions.

From an algorithmic point of view, HLS involves the scheduling
of operations from an untimed dataflow graph to specific time steps,
the allocation of operators from a given library, and the binding
of operations to operators [7]. These concerns are usually broken
down into separate phases to make them more tractable, and a
typical order is to perform allocation – scheduling – binding.

A recent addition to CIRCT is an infrastructure for static schedul-
ing, which currently supports the traditional, modularised approach
well. For example, a client, i.e. a pass performing anHLS-style lower-
ing, would first analyse the dependences in the input and determine
suitable operator types. From this, it constructs a scheduling prob-
lem, invokes a scheduler, and uses the computed solution to lower
further towards a statically-timed microarchitecture.

However, the concerns of scheduling, allocation and binding
are actually intertwined. To achieve the best possible results, it
is therefore prudent to consider these subproblems together. A
longstanding desire [21] is to model and “solve” HLS as a single
optimisation problem in the mathematical sense.

We believe that there is still a lot of untapped potential in this
idea to synthesise “better” hardware. The scheduling infrastructure
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Figure 1: An instance of an acyclic scheduling problem and
its solution, expressed in CIRCT’s extensible problemmodel.

in CIRCT, which we briefly introduce in the next section, is already
capable of modelling such combined problems. However, fully ex-
ploiting optimisation-driven HLS will require more of a community-
wide effort. To that end, we survey recent advances in this field in
Section 3. Our hope is to excite designers of novel languages and
tools, as well as developers of efficient solution strategies for these
combined problems, to work together in the future.

2 INFRASTRUCTURE IN CIRCT
The centrepiece of the infrastructure is an extensible problem model.
The basic components of the model are operations, operator types
and dependences, which form an instance of the problem. The com-
ponents and the instance carry arbitrary properties, which are either
part of the input or the solution. A first-class concern in the problem
definition are the input and solution constraints, which first check
whether a given instance is well-formed, and after scheduling, ver-
ify that the computed solution is valid. More complex problems are
defined solely in terms of additional properties and correspondingly
extended or refined constraints.

Figure 1 shows an example instance of an acyclic scheduling
problem. Operations and dependences resemble a graph structure,
and the operator types represent typical modules from an HLS
operator library. Operations have two properties, linkedOpr and
startTime. The former links each operation to a suitable operator
type, whereas the latter captures the solution computed by the
scheduler. Lastly, operator types abstract their execution charac-
teristics in the latency property. Here, the input constraints only
check whether all input properties are set to valid values. The solu-
tion constraints verify that the precedence relations implied by the
dependence edges are obeyed, i.e. for each dependence 𝑖 → 𝑗 , we
require that 𝑖 .startTime + 𝑖 .linkedOpr.latency ≤ 𝑗 .startTime.
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The infrastructure currently provides problem definitions for
acyclic and cyclic scheduling problems with simple resource con-
straints. The actual implementation as a C++ class hierarchy is de-
clared in circt/scheduling/Problems.h. The API to construct and
query a problem instance consists of decidedly simple getter/setter-
methods to make the infrastructure usable independently of the
concrete source and target dialects of an HLS-style lowering.

Reference schedulers for these problems, including a modulo
scheduler for pipeline synthesis, are available via circt/scheduling/
Algorithms.h. Most of them build on a specialised simplex solver
[8] that is part of CIRCT. The infrastructure is also prepared to use
external solvers from OR-Tools [11] in the future, e.g. for integer
linear programs or SAT problems.

3 WHAT’S POSSIBLE?
We now present interesting use-cases of optimisation-driven HLS.

1) Scheduling: Finding optimal modulo schedules. Let us start with
the obvious one – in optimisation-driven HLS, we can compute
provably optimal solutions for the best-possible results, according
to the objective. Modulo scheduling, for example, received a lot of
attention in this regard and was successfully modelled in multiple
mathematical frameworks such as integer linear programming [9,
18, 26], constraint programming [2], or in a combination of linear
programming and SAT solving [6].

These exact approaches are often “feared” for their exponential
worst-case runtimes, but the study in [18] revealed that typical HLS
instances can be solved quickly. Modulo scheduling is often done
by trying several candidate initiation intervals (IIs) until a feasible
schedule is found. An interesting benefit of exact schedulers is that
they can determine if a given II is infeasible, and advance directly
to the next candidate. Heuristic approaches based on backtracking
[3] have to run out of an internal budget of scheduling attempts
before they give up on a candidate II.

2) Scheduling+Binding: Fine-tuning themicroarchitecture. A sched-
uler’s main objective usually is to chop up a given dataflow graph
into as few distinct time steps as possible to reduce the latency, and
in case the target microarchitecture is pipelined, to maximise the
throughput by finding a small II. Even though HLS is very early in
the overall flow and we cannot directly control the logic synthesis
and place&route steps, we can abstractly model certain features of
the generated microarchitecture by pairing a combined scheduling
and binding problem with an advanced objective function.

For example, resource sharing requires multiplexers to route
different sets of operands to shared operators. More multiplexer
inputs generally mean longer combinational paths and potentially
a low operating frequency for the entire design. In [15], the goal
is therefore to balance the binding, i.e. minimise the maximum
number of inputs across the (implicit!) multiplexers in the sched-
ule. Similarly, operations in [23] are bound such that connections
between shared operators can be reused, in order to minimise the
amount of registers required to forward intermediate results in the
datapath.

3) Scheduling+Allocation: Exploring trade-offs. A peculiarity in
HLS is that we do not map a computation to a predefined set of
functional units, but rather have to instantiate the operators to

carry out the computation as needed. The only hard limit here is
implied by the available low-level resources (e.g. LUTs, FFs, etc.) on
a reconfigurable device, or the available area for an ASIC design.
Therefore, if we associate operator types with a static estimation of
the cost of an individual operator instance, and make the number
of instances variable, the allocation can be computed by a sched-
uler [19]. The combined problem has two orthogonal objectives,
i.e. maximising the throughput and minimising the resource de-
mand of the microarchitecture, and we can apply techniques from
multi-criteria optimisation to explore the different Pareto-optimal
solutions. These solutions either have to be presented to a human
designer to choose from, or can be fed into automatic tools: SkyCas-
tle [20], for example, processes kernels comprised of multiple loops
and pipelined functions, and uses pre-computed Pareto-optimal so-
lutions to select the overall fastest microarchitecture for the input
kernel that still fits onto a given amount of low-level resources.

4) Scheduling+Allocation+Binding: Spending hardware where it
matters. We assumed so far that operations are always mapped to a
single operator type, but in practice we often have multiple choices
with different trade-offs between their performance and resource
demand. The problem of selecting a particular operator type out
of a set of suitable options for each operation is called module
selection. The canonical example for this would be that HLS operator
libraries often provide different variants of the same operator, but an
operator type could also represent a nested loop [20], or a subgraph
[22], with pre-computed Pareto-optimal solutions.

Performing module selection in conjunction with scheduling and
allocation, e.g. as in [1, 14, 24], is a powerful approach, because it
makes contextual decisions part of the global optimisation process
that are otherwise very hard to answer locally and greedily, such
as: Can a slower operator be used without affecting the overall
performance? Is allocating three instances of type A better than
one B and one C? How to match throughput rates of connected
components? This is a hard problem to solve, so unsurprisingly,
(meta-)heuristics were mostly used to tackle it in the past.

4 CONCLUSION
All optimisation-driven HLS examples outlined in the previous
section can be captured by the extensible problem model through
additional component properties and constraints, and therefore
could be readily re-implemented for use in CIRCT-based HLS flows.
If these past successes are any indication, a more global view of
the HLS problem enables an automatic and deterministic search
in the vast design space of possible microarchitectures, and could
therefore be an important pillar of future, more productive tools.

We plan to rethink strategies to tackle such combined problems
efficiently, leveraging today’s processing power, progress in the op-
erations research community, and advances in solver technology. A
prerequisite for this research would be to define a set of benchmark
instances representative for modern, domain-specific HLS.

Furthermore, we expect that future, next-gen flows in the spirit
of works such as [4, 13, 17, 25] will require modelling and solving
exciting new problems. To that end, we are actively looking for
collaborations – if you ever wonder whether your approach (in
CIRCT or elsewhere!) could benefit from a little bit of “optimisation”,
please reach out!
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