
Case Study: Software and Tool Challenges Encountered in
Parameterizing a Domain-Specific Accelerator

Radhika Ghosal
Harvard University
Cambridge, MA, USA

Sabrina M. Neuman
Harvard University
Cambridge, MA, USA

ABSTRACT
For application domains with a range of different deployment sce-
narios, such as robotics, it can be advantageous to parameterize
accelerator designs so that they can be easily re-designed and cus-
tomized per-deployment. Previous work prescribed a systematic
methodology to parameterize a class of robotics accelerators accord-
ing to the physical features of the robot, and manually implemented
an accelerator for robot rigid body dynamics gradients for a ma-
nipulator arm. However, to automate the process of accelerator re-
deployment for future work, it has been necessary to elaborate on
the tool infrastructure to create a fully parameterized flow. Without
delving into the details of our particular architectural framework,
this case study informally provides a retrospective of some of the
challenges with tools and software that we have encountered while
parameterizing our domain-specific accelerator design.

1 INTRODUCTION
Systematic domain-specific hardware design methodologies are
necessary for rapid re-targeting of accelerator designs across differ-
ent deployment scenarios. In the robotics application domain, for
example, previous work introducing robomorphic computing has
demonstrated that there are substantial performance gains to be
had from systematically customizing hardware accelerators based
on the physical structure of the robot model [4]. While the robomor-
phic computing methodology applies across a broad class of robots,
however, the evaluation in that work only manually implemented
a single accelerator for a single robot model.

To realize the goal of generalizable re-deployment of accelerators
across diverse target scenarios (e.g., different robot models), system-
atic hardware design methodologies like robomorphic computing
must be extended and built upon to create parameterized, automated
domain-specific accelerator design frameworks. However, building
parameterized accelerator design flows is a challenging process that
can involve stitching together combinations of different software
tools, hardware compilers, and programming languages.

In this work, we describe challenges encountered in parameteriz-
ing a domain-specific accelerator for robotics applications. Abstract-
ing away the details of our particular application and architectural
framework, in this case study we provide an informal retrospective
of our experiences with hardware design tools and software, noting
challenges and opportunities for future hardware design work.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
LATTE ’22, March 1, 2022, Virtual, Earth
© 2022 Copyright held by the owner/author(s).

Figure 1: Accelerator parameterization infrastructure.

Figure 2: Overview of development workflow.

2 HIGH-LEVEL INFRASTRUCTURE & FLOW
Original Accelerator. Our starting point was a domain-specific
accelerator [4] written in Verilog and Bluespec System Verilog [6],
with most of the design in Verilog. Bluespec was used for CPU-
FPGA communication, and queues for pipelining accelerator stages.
Using Bluespec enabled the use of the Connectal framework [3] for
I/O with a host CPU. Connectal sets up CPU-side direct memory
accesses in C++ and FPGA-side buffers for handling PCIe I/O.

Parameterization &Workflow. To automate re-deployment of
the original accelerator, we built a parameterization infrastructure
that takes an XML configuration file as input; parses out parameters
that impact the accelerator; and feeds those parameters into our
accelerator template, implemented as Bluespec and Verilog code
generation scripts written in Python (Fig. 1). Our resulting devel-
opment workflow was that each time we parameterized a feature
of the accelerator, we edited our code generation Python scripts to
reflect that change, and generated new code to test (Fig. 2).

Design Decisions. For designing our parameterization infras-
tructure (Fig. 1), we narrowed down to several options: (a) re-
write the Verilog in a more metaprogramming-friendly HDL, e.g.,
Chisel [1]; (b) use a hardware compiler framework, such as Calyx [5]

LATTE ’22, March 1, 2022, Virtual, Earth Radhika Ghosal and Sabrina M. Neuman

or CIRCT [2], to generate hardware from higher-level specifications;
or (c) make our own generation infrastructure. We did not consider
HLS tools such as Vivado HLS because we started with an existing
Verilog accelerator, and wanted to avoid massaging HLS input to
re-produce the same processor and risking poorly-optimized output
compared to hand-tuned RTL [8]. SystemVerilog [7] would let us
us readily parameterize some features (e.g., instantiating variable
numbers of modules), but was not suitable for others (e.g., generat-
ing matrices of wires and registers with specific sparsity patterns).
Finally, none of the tools we were considering would let us easily
re-generate the original Bluespec portions of the accelerator.

We ultimately chose to use a scripting language for generating
hardware because we were starting with a relatively simple existing
accelerator written in Verilog and Bluespec, and had specific plans
for the parameterization methodology. We weighed this against the
upfront cost of adopting more fully-featured hardware generation
tools, and decided to avoid the overhead of learning new languages
(e.g., Scala, Chisel). We were not making any program transfor-
mations on the original algorithm or addressing complicated new
algorithms, so a full compiler framework was not needed; it was not
worth incurring the upfront cost to have access to abstract syntax
trees or control and data-flow graphs. Since we were generaliz-
ing an already-existing accelerator template, our focus was not on
making optimizations in the template itself, but simply parsing the
template arguments from our configuration file, and substituting
them into the template in a systematic manner. This could be done
in any easy-to-use scripting language; we chose to use Python to
directly write out Verilog and Bluespec code.

3 CODE CASE STUDY: DYNAMIC INDEXING
In this section, we examine a specific code case study example
(Alg. 1) to illustrate some of the challenges we have faced in devel-
oping, debugging, and scaling our accelerator design. This code was
implemented in Bluespec (which then generates Verilog) in our de-
sign, but the issues we discuss are tool-agnostic and are applicable
to any stack consisting of multiple layers of code generation.

Original Code: Dynamically indexing a 2D array.
CONST i_max =2; CONST num_PEs =2; REG i=0;
// { {i0: PE1 ,PE2}, {i1: PE1 ,PE2} }
CONST d1_table = { {0,1}, {1,0} };
CONST d2_table = { {1,0}, {0,1} };

rule getResult(proc.output_ready () && i < i_max);
d1_PE1=d1_table[i][0]; d1_PE2=d1_table[i][1];
d2_PE1=d2_table[i][0]; d2_PE2=d2_table[i][1];
out[d1_PE1][d2_PE1] = proc.PE1_out ();
out[d1_PE2][d2_PE2] = proc.PE2_out ();
...

Attempt #2: Declare a function.
(* noinline *) function mux_update(old [2][2] ,d1,d2,out)

new=old; new[d1][d2]=out; return old; endfunction;

rule getResult(proc.output_ready () && i < i_max);
out=mux_update(out ,d1_PE1 ,d2_PE1 ,proc.PE1_out ());
out=mux_update(out ,d1_PE2 ,d2_PE2 ,proc.PE2_out ());
...

Attempt #3: Unroll dynamic indexing into series of muxes.
rule getResult(proc.output_ready () && i < i_max);

case (i)
0: out [0][1]= proc.PE1_out (); out [1][0]= proc.PE2_out ();
1: out [1][0]= proc.PE1_out (); out [0][1]= proc.PE2_out ();
...

Algorithm 1: Code Case Study: Dynamically indexed array.

Alg. 1 shows an example of updating a 2D array for each index i
representing a step in a programmed schedule. For small schedule
lengths and numbers of processing elements (PEs), the Original
Code compiled and simulated successfully. However, it did not scale
for large i_max and num_PEs, and in fact never finished compil-
ing. We then explicitly declared a function, mux_update (Alg. 1,
Attempt #2), to help Bluespec infer a linear chain of muxes and
not inline them; this did compile and simulate successfully. How-
ever when synthesizing, we found a combinatorial explosion in the
number of LUTs used by these muxes, suggesting that the Blue-
spec compiler was trying to exhaustively generate muxes for every
possible value of d1 and d2. We ended up fully unrolling the ma-
trix updates manually in case statements (Alg. 1, Attempt #3). A
compiler should be able to infer that d1_PE1... d2_PE2 can be stat-
ically determined by the index i, and automatically generate the
case statements in Attempt #3. Unfortunately, we had to implement
unrolling manually, adding to code complexity and complicating
the debugging process. Challenges raised by this example follow:

Resource utilization/compilation blowing up after scaling.
When code-generating HDL using higher-level tools like Bluespec,
it is not always obvious which lines of high-level code will cause
resource utilization to skyrocket as parameters vary. We discovered
scalability issues in our Bluespec template only after experimentally
stress-testing our template using larger indices and more PEs.

Iterating between hardware template and instantiation.
As the Alg. 1 example demonstrates, our workflow was a cycle of
changing the hardware template, seeing how it scales, and iterating
(Fig. 2). Our workflow had hardware generation in-the-loop, so the
tools guided design decisions. In debugging, we often directly edited
the codegen-ed output HDL files. Once the design worked in simu-
lation, we back-propagated changes to our generation scripts. This
process could be tedious and error-prone for big design changes.

Interpretability of input code to output code generated.
When working with multiple layers of code generation tools, un-
derstanding which input snippet of code produced what output is
essential for tracking down errors and figuring out which codegen
tool is responsible. We have manually inspected and tested codegen-
ed output, and as the Alg. 1 example shows, it is not always easy to
anticipate what higher-level code will cause an explosion in gener-
ated HDL. Worse, addressing these issues can lead to solutions that
add to code complexity, further complicating interpretability.

4 CONCLUSION AND FUTURE DIRECTIONS
We contribute this case study to the conversation in the accelerator
tools design community. Hardware generation tools have come
a long way, but a full rewrite of an already-existing codebase in
order to use them is not always feasible. As potential users, we
would like to see more examples of tools interoperating with legacy
HDL modules, including generating code for other code generation
tools already in a pre-existing system stack (e.g., Connectal, Blue-
spec). Additionally, making hardware compilation interpretable is
essential for increasing adoption among hardware designers. The
successful growth of domain-specific computing is inextricably tied
to the development of elegant and user-friendly hardware design
solutions. We look forward to hardware generation tools enabling
future agile domain-specific architecture development.

Case Study: Software and Tool Challenges Encountered in Parameterizing a Domain-Specific Accelerator LATTE ’22, March 1, 2022, Virtual, Earth

REFERENCES
[1] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman,

Rimas Avižienis, John Wawrzynek, and Krste Asanović. 2012. Chisel: constructing
hardware in a scala embedded language. In DAC Design automation conference
2012. IEEE, 1212–1221.

[2] Schuyler Eldridge, Prithayan Barua, Aliaksei Chapyzhenka, Adam Izraelevitz, Jack
Koenig, Chris Lattner, Andrew Lenharth, George Leontiev, Fabian Schuiki, Ram
Sunder, et al. 2021. MLIR as Hardware Compiler Infrastructure. InWorkshop on
Open-Source EDA Technology (WOSET).

[3] Myron King, Jamey Hicks, and John Ankcorn. 2015. Software-driven hardware
development. In Proceedings of the 2015 ACM/SIGDA international symposium on
field-programmable gate arrays. 13–22.

[4] Sabrina M Neuman, Brian Plancher, Thomas Bourgeat, Thierry Tambe, Srinivas
Devadas, and Vijay Janapa Reddi. 2021. Robomorphic computing: a design method-
ology for domain-specific accelerators parameterized by robot morphology. In

Proceedings of the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems. 674–686.

[5] Rachit Nigam, Samuel Thomas, Zhijing Li, and Adrian Sampson. 2021. A com-
piler infrastructure for accelerator generators. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems. 804–817.

[6] Rishiyur Nikhil. 2004. Bluespec System Verilog: efficient, correct RTL from high
level specifications. In Proceedings. Second ACM and IEEE International Conference
on Formal Methods and Models for Co-Design, 2004. MEMOCODE’04. IEEE, 69–70.

[7] David I Rich. 2003. The evolution of SystemVerilog. IEEEDesign& Test of Computers
20, 04 (2003), 82–84.

[8] Felix Winterstein, Samuel Bayliss, and George A Constantinides. 2013. High-level
synthesis of dynamic data structures: A case study using Vivado HLS. In 2013
International conference on field-programmable technology (FPT). IEEE, 362–365.

	Abstract
	1 Introduction
	2 High-Level Infrastructure & Flow
	3 Code Case Study: Dynamic Indexing
	4 Conclusion and Future Directions
	References

