
Rust as a Hardware Description Language
Samit Basu

basu.samit@gmail.com, Fremont CA, USA

ABSTRACT
Rust [1] makes an excellent language for hardware description.
A number of new HDLs are Rust-inspired in syntax [2],[3], but
RustHDL[5] is a framework for turning ordinary procedural Rust
code into firmware. The first attempt, while successful had several
shortcomings that are discussed in this paper. The new framework,
RHDL[6], should address those shortcomings and significantly ease
the use of Rust as an HDL.

1 INTRODUCTION
While the field of HDLs may be crowded, I propose the use of
the Rust Programming Language (RPL) as a hardware description
language. Beyond its status as most loved of the programming
languages [7], Rust has steadily been gaining traction as a serious
language for systems programming, embedded software, and other
mission critical applications. The particular features of Rust that
are relevant to hardware description include:

• Static typing and sane syntax, which can preventmany errors
at compile time.

• Functional programming features including pattern match-
ing and iterators for testing.

• A powerful macro system that allows for meta-programming.
• Package management and a growing open-source ecosystem
to ease collaboration and reuse.

• Built-in test capabilities to minimize “bench”-time.
• Significant tooling and infrastructure support in the form of
linters, analysis tools, etc.

• Generics and const generics to allow for parameterized de-
signs.

The RustHDL framework, and its successor RHDL, take advan-
tage of all of these features to create an environment for hardware
description that is powerful, easy to use, extensible and open.

The end goal is to enable a wider class of engineers to develop
high quality hardware by reusing their skills as Rust developers in
the hardware domain. This paper briefly describes the RustHDL
approach to developing FPGA firmware using the RPL, and then
identifies the observed shortcomings and how they may be ad-
dressed in the upcoming RHDL framework. Finally, I touch upon
some of the unsolved problems in using Rust for hardware descrip-
tion. Note that I use the term “hardware description” here to mean
FPGA firmware (or possibly ASIC designs), as Rust is already estab-
lished as a language for embedded systems programming (which
is also often referred to as “firmware”). I think it’s also important

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
LATTE ’24, March 26, 2023, Vancouver, BC, Canada
© 2024 Copyright held by the owner/author(s).

to point out that the appeal of using Rust as an HDL is it’s famil-
iarity to engineers coming from a C background. The syntax is
“C-like”, and while functional programming concepts are supported,
the language is multi-paradigm. Given that part of the objective
of RustHDL and RHDL is to enable a wider class of engineers to
develop hardware, this is a critical point.

2 SYNTAX
RustHDL is not a new language. Instead it is a set of libraries and
macros along with a subset of the Rust programming language that
can be used to generate firmware. The key principle of RustHDL is:

RustHDL designs are valid Rust programs that can be com-
piled and run on a host computer using the included event-
based simulator.

In this sense, RustHDL is embedded in the Rust language much
as MyHDL is embedded in Python [8], and Chisel is embedded in
Scala [9]. The immediate implication is that:

• All RustHDL designs must pass the strenuous correctness
checks of the Rust compiler rustc.

• An entire class of potential bugs are eliminated, such as type
mismatches, use-before-initialization, unassigned outputs,
etc.

• Tools such as clippy and rust-analyzer can immediately
be used to check, lint and analyze code with no additional
investment.

• The Rust test framework can be used to test the designs
directly.

Note that unlikeMyHDL, RustHDL does not use a generator pattern
and infer the required hardware. Instead, the AST itself is trans-
formed into the circuit description. For example, the following AST
fragment describes (behaviorally) a mux that selects between the
current counter output counter.q and counter.q+1. The descrip-
tion is not “builder” style, in which a MUX is explicitly instantiated.
The MUX is inferred from the imperative code.

// signal for false control signal --v
self.counter.d.next = self.counter.q.val();
// v-- MUX control signal
if self.enable.val() {
// signal for true control signal --v
self.counter.d.next = self.counter.q.val() + 1;

}

This is in contrast to a combinator style of hardware description,
for example in [4], where the language used is Rust, but hardware
description is functional.

The syntax should be fairly familiar to anyone comfortable with
Rust (or C++). The following is an example of a simple SPI master
in RustHDL, generic over the transaction size N, edited for brevity:
#[derive(LogicBlock)]
pub struct SPIMaster<const N: usize> {

pub clock: Signal<In, Clock>,
pub data_outbound: Signal<In, Bits<N>>,



LATTE ’24, March 26, 2023, Vancouver, BC, Canada Samit Basu

pub start_send: Signal<In, Bit>,
pub data_inbound: Signal<Out, Bits<N>>,
pub wires: SPIWiresMaster,
local_signal: Signal<Local, Bit>,
state: DFF<SPIState>,
cs_off: Constant<Bit>,

}

The pub keyword is used to denote the visibility of the signals.
Signals marked with a direction, and type. Internal components
such as flip-flops and strobes are all included in the top level struct,
which is initialized using normal Rust code. The Local signal repre-
sents a local variable used in the update function, but not otherwise
exposed. As RustHDL has no type inference, it requires explicit
allocation and types for all local variables. The member cs_off
(along with others omitted) is a constant constructed at runtime
that encodes the SPI mode of the bus. Finally, the SPIWiresMaster
is a struct that describes the interface to the actual SPI bus. Inter-
faces (unlike structs in SystemVerilog, for example) include both
input and output signals, and can be used to “connect” complex
components with a single line.

Note that in this instance, state: DFF<SPIState> is equivalent
to a module instantiation. The DFF is a flip-flop, and SPIState is
a C-style enum that represents the state of of the controller. By
including it as a member of the struct, we request an instance of it
be created in the generated design. Thus, composition of modules
is equivalent to composition of data structures.

RustHDL (but not RHDL) supports bidirectional interface decla-
rations which can be used to connect complex components together
in a type-safe way. As an example, an interface to an SDRAM chip
with a D-bit data bus and a 13 bit address bus is defined as:

#[derive(LogicInterface, Clone, Debug, Default)]
#[join = "SDRAMDriver"]
pub struct SDRAMDevice<const D: usize> {

pub clk: Signal<In, Clock>,
pub we_not: Signal<In, Bit>,
pub cas_not: Signal<In, Bit>,
pub ras_not: Signal<In, Bit>,
pub address: Signal<In, Bits<13>>,
pub write_data: Signal<In, Bits<D>>,
pub read_data: Signal<Out, Bits<D>>,
pub write_enable: Signal<In, Bit>,

}

and can be connected to the corresponding signals in another IP
block with a single join statement. This significantly reduces the
amount of error-prone wiring that must be done by code or graphi-
cally. The join statement is used inside of an update function as
the following demonstration:
#[derive(LogicBlock)]
struct I2CControllerTest {

clock: Signal<In, Clock>,
controller: I2CController,
target_1: I2CTestTarget,
target_2: I2CTestTarget,
test_bus: I2CTestBus<3>,

}

impl Logic for I2CControllerTest {
#[hdl_gen]
fn update(&mut self) {

clock!(self, clock, controller, target_1, target_2);
I2CBusDriver::join(&mut self.controller.i2c,
&mut self.test_bus.endpoints[0]);

I2CBusDriver::join(&mut self.target_1.i2c,
&mut self.test_bus.endpoints[1]);

I2CBusDriver::join(&mut self.target_2.i2c,
&mut self.test_bus.endpoints[2]);

}
}

In this example, the controller, and 2 DUTs are connected to a bus.
Since all of the logic is simply connecting the interfaces together, it
consists mainly of join statements.

Back to the SPI controller example, an update function calculates
the next value of the signals (external and internal) based on the
current state stored in the DFF state, which itself is a C-style enum.
Rust ensures that the state machine match/case is exhaustive.

3 MENTAL MODEL
RustHDL attempts to build on HDLs like Lucid[10] to provide a
more understandable mental model for how hardware works. In an
imperfect implementation, RustHDL defines a Signal struct that
has a read only endpoint x.val() for signal x, and a write endpoint
x.next. The comments indicate how the AST is transformed into a
hardware description.

// Design is parametric over N - the size of the counter
impl<const N: usize> Logic for Strobe<N> {
#[hdl_gen]
fn update(&mut self) {
// v-- latch prevention
self.counter.d.next = self.counter.q.val();
// v-- mux control signal
if self.enable.val() {
// v-- value assigned to signal if mux control is true
self.counter.d.next = self.counter.q.val() + 1;

}
// v-- combinatorial logic
self.strobe.next = self.enable.val() &
(self.counter.q.val() == self.threshold.val());

// v-- higher priority mux for previous mux output
if self.strobe.val() {
self.counter.d.next = 1.into();

}
}

}

Rust lacks write-only semantics, so the framework checks for
read-before-write on the x.next endpoint. Using this nomenclature,
the idea of non-blocking assignments is replaced with a conditional
model - i.e., given the current value in the set of signals, what next
value do I want them to take? This mental model is coupled with
analysis passes that look (with the aid of Yosys[11] in RustHDL) for
latch inferences due to missing assignments and other such issues.

The mental model of RustHDL is not ideal (and is replaced in
RHDL). However, the main advantage it has is that it is very “nor-
mal” looking. A signal’s .next endpoint can be written to as many
times as desired inside of an update function. Only the last value it
takes will matter when the function completes. In essence, the last
successful write to a signal “wins”, where success may be condi-
tional (in this case, for example, the value of self.counter.d.next
depends on the value of self.enable.val()). For synchronous
logic this concept can be expressed as:

The current value of the signal is accessible via .val(),
and the value that signal will take on the next clock cycle
will be decided by the last assignment to .next. I.e., in the
next clock cycle next -> val.



Rust as a Hardware Description Language LATTE ’24, March 26, 2023, Vancouver, BC, Canada

Note that in the case of asynchronous combinatorial logic, the
value of a signal is defined when next and val are equal. Local vari-
ables can be both written to and read, functioning as scratchpads,
as long as a write precedes any subsequent reads or writes.

RHDL simplifies the mental model by using the natural Rust
data flow that arises from functions operating on value types. Data
inputs are fed into functions, and data outputs are returned, with
the update function becoming pure, with no side effects. Feedback
loops must be broken by registers. I hope to detail this more at the
conference or in a future paper.

4 SIMULATION
Testing of designs in RustHDL does not require the use of third
party tools or tooling. Tests utilize a built-in event-based simulation
engine that can simulate any RustHDL design. Black box IP cores
can be simulated by providing Rust equivalents of the hardware
descriptions. The simplest example is something like a block RAM,
which can be trivially instantiated in Verilog, but requires a be-
havioral model in RustHDL. In RustHDL that behavioral model is
written in Rust, and can be substituted into the simulation envi-
ronment. Other black box IP cores can be equivalently simulated
in Rust. Note that because RustHDL supports combinatorial con-
nections across modules that the simulator iterates until it reaches
a fixed point. The iterations will terminate with an error if some
upper limit is reached.

Speed is a critical factor in simulation. RustHDL is a reasonably
fast simulator, and the Rust test framework is inherently parallel,
and can run multiple tests in parallel. Using system calls/shell-
outs, the entire synthesis and bitstream generation process can
be handled inside the Rust ecosystem. A direct comparison with
Verilator proved difficult as Verilator rejected the Verilog gener-
ated by RustHDL (possibly due to the presence of inter-module
asynchronous logic in the design).

5 REUSE
Hardware descriptions in RustHDL are simply structs, and are
composed of other hardware components or modules via composi-
tion. This allows for easy reuse of components, the construction
of complex designs out of simpler, smaller components, combined
with sane rules of scoping and encapsulation. Furthermore, each
of the sub-components can be tested in isolation, and then tested
after composition in the larger design.

Rust is a very composable language, and crates.io provides
a natural mechanism for sharing and reusing components. As an
example, in RustHDL, handling of hardware specific details (such as
synthesis tools and constraints files for specific FPGAs and boards)
is handled through a board support package. This is simple a library
that provides the defaults, pin-outs, and other mapping informa-
tion needed to generate a bitstream for a given piece of hardware.
As an open-ended and potentially unbounded problem, the BSP
can be published as a crate (package) in the Rust ecosystem by
contributors [12]. This decentralizes control over one of the more
challenging parts of maintaining support for a bewildering array
of devices.

Meta-programming is supported in RustHDL, but to a some-
what limited extent. Most of the meta-programming is provided by

macros (procedural and declarative) that generate the necessary
code. FIFOs that require various generic parameters can be instan-
tiated via a simple macro. And interfaces use macros to describe
mating interfaces with signals of opposite direction.

6 SHORTCOMINGS AND THE FUTURE
RustHDL has been used for non-trivial commercial firmware devel-
opment and is deployed. It has also seen some level of interest and
adoption from the open source community. Feedback from early
users lead to the following list of shortcomings:

• The subset of Rust supported by RustHDL (which is the
subset of the language that can be directly translated into
Verilog) is too small to write “natural” Rust code.

• RustHDL does not support Algebraic Data Types (data-carrying
enums).

• Local variables and type inference are critical to writing
clean and idiomatic Rust code.

• Composition of functions/behavior is not possible.
• Writing test-benches required an understanding of the simu-
lator mechanics.

• Backends are needed for more than just Verilog.
Solving all of these problems essentially necessitated a rewrite

of RustHDL. The new framework, called RHDL (Rust Hardware De-
scription Language) is currently under development. The primary
technical difference to RustHDL is the introduction of an auxiliary
compiler into the processing. This compiler works in tandem with
rustc to convert an AST of the code into a RTL-like HDL, and then
transform and optimize that representation into a form that can
be synthesized. The compiler is key to support of things like early
returns, match and if expressions (as opposed to statements), and
other Rust-isms that are not common in HDLs, but are common in
Rust. The compiler also provides ADT support with control over
the layout of the data, and easy composition of data types into
structs of arbitrary complexity.

On unsolved problem that remains is the difficulty in con-
necting downstream toolchain outputs (such as an analysis
of a long-timing path) back to the original Rust code. I be-
lieve this is a significant problem for all high level HDLs
and requires some serious thought, as adoption by hard-
ware engineers will be limited until the diagnostics from
the downstream tools can be used to inform changes in
the high level code.

7 CONCLUSIONS
I believe Rust is a promising basis for a hardware description lan-
guage. It offers many powerful tools that can be utilized to build
composable, reusable and correct hardware designs. The RustHDL
framework was a first step in this direction, and the in-development
RHDL framework promises to address many of the shortcomings
of the first attempt.



LATTE ’24, March 26, 2023, Vancouver, BC, Canada Samit Basu

REFERENCES
[1] “Rust - A language empowering everyone to build reliable and efficient software”,

https://rust-lang.org (Accessed Feb 1, 2024).
[2] F. Skarman and O. Gustafsson, “Spade: An Expression-Based HDLWith Pipelines”,

Open Source Design Automation Conference, 2023.
[3] “XLS: Accelerated HW Synthesis”, https://google.github.io/xls/ (Accessed Feb 1,

2024).
[4] Sungsoo Han, Minseong Jang, and Jeehoon Kang, “ShakeFlow: Functional Hard-

ware Description with Latency-Insensitive Interface Combinators”, ASPLOS
2023.

[5] “RustHDL - Write FPGA Firmware using Rust!”, https://rust-hdl.org/ (Accessed
Feb 1, 2024).

[6] “RHDL - Rust Hardware Description Language”, https://github.com/samitbasu/
rhdl (Accessed Feb 1, 2024).

[7] “Stack Overflow Developer Survey 2023”, https://insights.stackoverflow.com/
survey/2023 (Accessed Feb 1, 2024).

[8] “MyHDL - From Python to Silicon!”, https://www.myhdl.org/ (Accessed Feb 1,
2024).

[9] “Chisel - Software-defined hardware”, https://www.chisel-lang.org/ (Accessed
Feb 1, 2024).

[10] J. Rajewski, “Lucid - FPGA Tutorials”, https://alchitry.com/lucid/ (Accessed Feb
18, 2024).

[11] C. Wolf, “Yosys Open SYnthesis Suite”, https://yosyshq.net/yosys/ (Accessed Feb
18, 2024).

[12] “rust-hdl-bsp-step-mxo2-lpc - rust-hdl board support package for STEP-MXO2-
LPC”, https://crates.io/crates/rust-hdl-bsp-step-mxo2-lpc (Accessed Feb 4, 2024).

https://rust-lang.org
https://google.github.io/xls/
https://rust-hdl.org/
https://github.com/samitbasu/rhdl
https://github.com/samitbasu/rhdl
https://insights.stackoverflow.com/survey/2023
https://insights.stackoverflow.com/survey/2023
https://www.myhdl.org/
https://www.chisel-lang.org/
https://alchitry.com/lucid/
https://yosyshq.net/yosys/
https://crates.io/crates/rust-hdl-bsp-step-mxo2-lpc

	Abstract
	1 Introduction
	2 Syntax
	3 Mental Model
	4 Simulation
	5 Reuse
	6 Shortcomings and the Future
	7 Conclusions
	References

