
Multi-Target DSL and MLIR Dialect for Streaming
Manuel Cerqueira da Silva

University of Porto
INESC TEC
Portugal

manuel.m.carvalho@inesctec.pt

Luís Crespo
INESC-ID, Instituto Superior Técnico,

Universidade de Lisboa
Portugal

luis.miguel.crespo@tecnico.ulisboa.pt

Nuno Neves
INESC-ID, Instituto Superior Técnico,

Universidade de Lisboa
Portugal

nuno.neves@inesc-id.pt

Nuno Paulino
INESC TEC / University of Porto

Portugal
nuno.m.paulino@inesctec.pt

João Bispo
University of Porto / INESC TEC

Portugal
jbispo@fe.up.pt

ABSTRACT
With the shift towards custom architectures, there is a growing
need for new compilation approaches. Our focus lies in crafting an
Multi-Level Intermediate Representation (MLIR) dialect capable of
jointly representing streaming and vector processing operations.
We introduce our own Domain Specific Language (DSL) intended to
bridge the gap between the MLIR layer and code generation suited
for streaming-oriented hardware accelerators. The Structural Repre-
sentation Language (SRL) abstracts streaming and vector concepts,
serving as an intermediary step towards generating code contain-
ing our proposed dialect from diverse input sources, a task we aim
to explore in future work. We present the syntaxes of the SRL DSL
and the dialect, demonstrating how they can be leveraged to tar-
get general-purpose processors with SIMD coprocessors, as well
options like FPGAs and CGRAs.

1 INTRODUCTION
In this work, we propose a data streaming DSL and an equivalent
MLIR dialect as an intermediary layer, contributing to code gen-
eration suited for hardware accelerators. Data streaming, in this
context, refers to a continuous data flow between the memory and
the processor, or co-processor. Our focus is on creating a dialect to
represent this type of access, together with operations over vector
data types (i.e., SIMD-like).

To validate the created abstractions, wewill consider: 1) targeting
an existing instruction set extension for RISC-V called Unlimited
Vector Extension (UVE)[2, 4], which relies on a RISC-V core modi-
fied with streaming and vector hardware, and 2) generating HDL
for co-processors that implement the expressed stream and vector
operations. By decoupling the memory access from computational
tasks, streaming enables parallel execution and pre-fetching. This
decoupling can lead to improved vectorisation, especially in sce-
narios where memory access patterns are complex and irregular.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
LATTE ’24, March 26, 2024, San Diego, CA, United States of America
© 2024 Copyright held by the owner/author(s).

Va
lid

at
io

n 
#2

MLIR

Va
lid

at
io

n 
#1

UVE Dialect

HW Dialects

Use Case #1

Use Case #2

Pr
og

re
ss

iv
e

Lo
w

er
in

g

RISC-V (GPP)

UVEUVE
ASM

RISC-V
ASM+

SRL Dialect

Upstream
Dialects

1:1 Mapping
(MLIR entry point)

Custom
Hardware

RISC-V
(GPP)

LLVM Dialect

+

SRL
Native

Arbitrary
C/C++

SRL
Parser

JSON Parse &
Convert

LLVM-IR
Analysis

Figure 1: Compilation flow from SRL Native (DSL) to two
hardware targets, where the DSL can be provided either by
user input, or as a JSON generated from LLVM-IR analysis.

2 Structural Representation Language (SRL)
Our DSL, named SRL, has three distinct representations: one in
JSON for easier interface with other tools, another in a textual
representation designed for use by human software developers, and
an MLIR dialect used for the compilation back-end, for integration
with other MLIR dialects in order to generate the final binaries.

The development of the SRL DSL and respective dialect are mo-
tivated by the objective of supporting our current primary use case,
the UVE assembly, a RISC-V instruction set extension supported
by a RISC-V core with a streaming engine capable of SIMD-like
operations [2]. To be precise, the SRL is meant to replace the current
compiler-based approach for generating UVE code, which relies
on analysing LLVM-IR to identify streaming opportunities [4], and
generating an executable through a modified linking process.

However, through this approach, the information that is lost
at the LLVM-IR level complicates the analysis, leading to under-
utilisation of UVE’s support for complex access patterns. That is,
this flow is a raising step to recover computational streaming ab-
stractions, that should reside at a higher level or mid-level, and
then be lowered directly into the streaming-capable hardware.

To address this, we aim to leverage SRL (both DSL and dialect)
to preserve this contextual and structural information, including
loop structures, at a higher level, supporting more sophisticated
compilation onto the SIMD-like hardware which implement UVE,
but also enabling the possibility of targeting other back-ends, e.g.,
HDL generation.

To support this development we are representing the output of
the current LLVM-IR analysis through the aforementioned JSON



LATTE ’24, March 26, 2024, San Diego, CA, United States of America Manuel Cerqueira da Silva, Luís Crespo, Nuno Neves, Nuno Paulino, and João Bispo

1 // Dimensions
2 d1 = Dim(init: x_offset, step: step, length: len);
3 d2 = Dim(init: y_offset, step: step, length: len);
4 d3 = Dim(init: output_offset, step: step, length: len);
5
6 // Streams
7 xStream = InputStream<f32>(base: x_address, dims: [d1]);
8 yStream = InputStream<f32>(base: y_address, dims: [d2]);
9 outStream = OutputStream<f32>(base: output_address, dims: [d3]);
10
11 //Computation iterates until the end of the stream.
12 whilePresent(xStream.dim[0]) {
13 outStream = xStream+yStream*mul_factor;
14 }

Figure 2: Proposed SRL DSL syntax for saxpy function

entry point, benefiting from the already implemented identification
of streaming and vector operations performed over state-of-the-art
benchmark kernels.

2.1 SRL DSL
We initially defined the SRL DSL syntax based on the outputs of the
LLVM-IR analysis in their JSON format, as mentioned. Besides being
able represent the analysis outputs (e.g., stream configurations,
computation), the syntax was defined for readability, to be human
writable.

The SRL is organised into inputs (live-ins), outputs (live-outs),
streams and computation. Inputs and outputs are defined by their
identifiers and types (e.g. int, float). Streams also have identifiers
and types, and are specified to be either input or output, have a
base pointer, and a list of dimensions (ranging from 1D to 8D). The
dimensions are determined by an initial offset, a step, and a length.
It is also possible to declare dimension modifiers that change the
stride or length in runtime, which allows for more complex patterns,
such as triangular access patterns. In respect to computation, in
addition to common scalar arithmetic and logical operations, SRL
also represents vector operations between streams.

Within the JSON representation, the computation segment is
represented as a Dataflow Graph, separate from input/output spec-
ification, stream initialisation, or control. The control flow opera-
tions are implemented through attributes of the streams themselves,
e.g, an empty status flag.

To exemplify the use of the DSL, consider the Single precision A
X plus Y (SAXPY) equation:

dest[𝑖] = src2[𝑖] + src1[𝑖] × value, for 𝑖 = 0 to size − 1

Figure 2 shows an implementation of this equation using the
textual form of the DSL. This example defines two input streams,
xStream and yStream, and an output stream, outStream. It then
performs the SAXPY operation until the end of the stream, utilising
the stream dimension to control the flow. The streaming abstraction
removes all explicit memory accesses during computation. The
process of continuously fetching data in the configured pattern is
now a separate problem and can be tackled concurrently, i.e., by a
specialized hardware engine. Every time an input stream variable
is read, a datum is consumed and the following read will fetch the
next datum. The same logic applies for output streams. The writes

1 // Stream declaration
2 %d1 = srl.dim %d1_off, %step, %len : dim_type
3 %d2 = srl.dim %d2_off, %step, %len : dim_type
4 %d3 = srl.dim %d3_off, %step, %len : dim_type
5
6 %xStream = srl.create_input_stream %x_addr, %d1: stream_type
7 %yStream = srl.create_input_stream %y_addr, %d2: stream_type
8 %outStream = srl.create_output_stream %y_addr, %d3: stream_type
9
10 // Computation
11 %control_dim = srl.get_control_dim %xStream : dim
12
13 srl.while_present (%control_dim) : (dim_type) -> i32 {
14 srl.mult %u0, %yStream, %mult_factor : f32
15 srl.add %outStream, %xStream, %u0 : f32
16 }

Figure 3: MLIR Level implementation of the SAXPY function
including SRL dialect statements

or reads to the stream variables are thus agnostic to access latency
or stalls, as they block until the operation is possible.

2.2 SRL Dialect
The SRL dialect mirrors our DSL, serving as an entry-point into
the MLIR ecosystem. Figure 3 exemplifies our proposal for the SRL
dialect, given the features we must represent, and the abstraction
layer we have chosen. Regarding the stream declaration, the state-
ment:

d1 = Dim(init: x_offset, step: step, length: len);
u1 = InputStream<f32>(base: x_address, dim: [d1]);

easily converts into the MLIR representation:

%d1 = srl.dim %d1_off, %step, %len : dim_type
%xStream=srl.create_input_stream %x_addr, %d1:stream_type

Development and use of the dialect faces certain challenges,
particularly in ensuring a valid MLIR representation of both stream
types and operations. For instance, stream register assignment
and use must be handled differently, since MLIR relies on SSA
representation, while stream register names must be preserved
despite being read/written, as each stream is bound to a specific
hardware registers after being configured.

However, most SRL operations, i.e. arithmetic, logical and loops
are straightforwardly integrated into existing MLIR representations
(i.e., arith). This characteristic positions our dialect as a potential
future target for integration with other MLIR dialects, such as arith,
scf, tensor, or vector [3]). The significant distinction between our
dialect and these upstream dialects is its role as an intermediary
interface. The novelty lies in attempting to create a MLIR dialect to
bridge higher-level dialects down to targets (e.g., the UVE assembly)
or specialised hardware (e.g., through use of hardware oriented
dialects) capable of streaming and vectorisation.

Furthermore, since upstream dialects can be generated from
C/C++ code, placing our SRL dialect at an intermediary stage be-
tween these upstream dialects and lower-end dialects or targets will
allow for future compilation support starting for high-level code,
replacing the current analysis over LLVM-IR and integrating this
process of identifying streaming and vector opportunities natively,



Multi-Target DSL and MLIR Dialect for Streaming LATTE ’24, March 26, 2024, San Diego, CA, United States of America

1 ss.ld.w u1, %[src1], %[size], %[stride] # Configures stream data
2 ss.cfg.vec u1 # Configure vector registers as a vector dimension
3 ss.ld.w u10, %[src2], %[size], %[stride] # Same as u1
4 ss.cfg.vec u10
5 ss.st.w u3, %[dest], %[size], %[stride]
6 ss.cfg.vec u3 # Same as u1
7 so.v.dp.w u4, %[value], p0 # Stores 'value' in u4 register
8 .L1%=: # Perform a vector addition (u3 = u10 + u1 * u4)
9 so.a.mul.fp u5, u1, u4, p0
10 so.a.add.fp u3, u10, u5, p0
11 so.b.nc u1, .L1%= # Branch to L1 if stream not complete

Figure 4: UVE assembly implementation of SAXPY function

into a one-shot compilation flow. That is, the C/C++ input shown in
Figure 1 is fed directly into the MLIR ecosystem, bypassing the use
of the SRL DSL if desired, although the DSL remains a useful tool
for explicit manipulation of data streams and vector operations.

The following sections explain the remainder of the envisoned
lowering processes into to our two mentioned targets, UVE as-
sembly (Section 2.3), and Hardware Description Language (HDL)
(Section 2.4).

2.3 Lowering to UVE Assembly
The UVE is composed of approximately 80 instructions, operat-

ing on a set of 32 configurable vector/streams registers (u0 to u31)
and 16 predicate registers (p0 to p15). Computation instructions
are predicated via the predicate registers, and so computations only
happen on each datum of a vector based on it’s respective predicate.

Figure 4 shows the result of lowering theMLIR code in Figure 3 to
this assembly. The streams are configured to read (i.e., u1 and u10)
or write (u3) data from specified addresses, through arguments such
as src1. The ’create_input_stream’ is replaced with stream loading
(ss.ld.d) and configuration (ss.cfg.vec) instructions. A vector
register u4 holds the same constant floating-point value in all its
lanes. The WhilePresent loop from the original code is substituted
with a conditional branch which checks the stream state, and the
loop body contains all computation instructions. While most of the
operations were easily translated to UVE instructions, there were
some challenges encountered, particularly in dealing with register
assignment, due to SSA representation as previously mentioned.

To generate a final executable, this code can be handled as an
assembly file and linked against a host C/C++ application via a
function call.

2.4 Lowering to HDL
To generate HDL capable of implementing the abstractions ex-
pressed through SRL, the streaming tasks must be translated to
modules capable of complex memory access patterns, and compute
operations are substituted with their hardware counterparts.

We tested possible paths using such hardware dialects that may
enable this translation [1]. For instance, using Calyx [6] and its
dialect we can successfully generate HDL (namely, SystemVerilog).
This dialect can be generated from upstream dialects, as we intend
to do with he SRL dialect. Thus, despite challenges to accurately
generating valid fully custom streaming hardware structure descrip-
tions, there is a viable path to translating SRL to Calyx or other
hardware dialects. Furthermore, since we aim to support generation

of SRL dialect from C/C++, this would be akin to implementing flow
similar to traditional High-Level-Synthesis (HLS) within MLIR.

Alternatively, some concrete non von Neumann platforms can
be considered as possible to targets, such as CGRAs that consume
data streams in a manner analogous to UVE [5].

3 CONCLUSIONS AND FUTUREWORK
This work addresses challenges in contemporary computing post-
Moore’s Law by proposing novel compilation approaches for cus-
tom computing systems. It emphasises the importance of the MLIR
project for compiling onto planned targets such as custom hard-
ware generation and the UVE for RISC-V. The approach involves
defining a syntax and parser for a DSL to represent streaming and
vector computations, mapping it onto its respective dialect in the
MLIR framework, and lowering it to one of the targets currently
considered, chief of which is a RISC-V core with a streaming engine.

The integration of SRL into the middle-end of the compilation
process will entail relocating the current analysis conducted on
LLVM-IR to this stage by generating a JSON that will produce SRL.
This enables the compilation of arbitrary C++ code for the UVE.

Future plans include using the JSON interface for high-level lan-
guages and machine learning frameworks, optimising for streaming
within the SRL dialect, and expanding its applicability to other SIMD
architectures beyond UVE for instance, the RISC-V "V" vector ex-
tension (in this case, the dialect vector could be a target of SRL
lowering). Overall, this work contributes to supporting heteroge-
neous architectures’ compilation challenges.

ACKNOWLEDGMENTS
This work was funded by Fundação para a Ciência e a Tecnologia
(FCT), under project 2022.06780.PTDC (DOI: 10.54499/2022.06780.PTDC).
The authors also acknowledge the contributions from projects
2022.11626.BD, andUIDB/50021/2020 (DOI: 10.54499/UIDB/50021/2020).

REFERENCES
[1] Manuel Cerqueira da Silva, Luís Sousa, Nuno Paulino, and João Bispo. 2024. A DSL

and MLIR Dialect for Streaming and Vectorisation. In Applied Reconfigurable Com-
puting. Architectures, Tools, and Applications, Iouliia Skliarova, Piedad Brox Jiménez,
Mário Véstias, and Pedro C. Diniz (Eds.). Springer Nature Switzerland, Cham, 181–
190.

[2] Joao Mario Domingos, Nuno Neves, Nuno Roma, and Pedro Tomás. 2021. Unlim-
ited Vector Extension with Data Streaming Support. In Proc. of the 48th Annual
ACM/IEEE International Symposium on Computer Architecture (ISCA). 209–222.
https://doi.org/10.1109/ISCA52012.2021.00025

[3] LLVM MLIR Contributors. Accessed 2024. MLIR Documentation: Vector Dialect.
https://mlir.llvm.org/docs/Dialects/Vector/ Accessed on: March 8, 2024.

[4] Nuno Neves, Joao Mario Domingos, Nuno Roma, Pedro Tomás, and Gabriel Falcao.
2022. Compiling for Vector Extensions With Stream-Based Specialization. IEEE
Micro 42, 5 (2022), 49–58. https://doi.org/10.1109/MM.2022.3173405

[5] Nuno Neves, Pedro Tomás, and Nuno Roma. 2020. Reconfigurable Stream-based
Tensor Unit with Variable-Precision Posit Arithmetic. In 2020 IEEE 31st Inter-
national Conference on Application-specific Systems, Architectures and Processors
(ASAP). 149–156. https://doi.org/10.1109/ASAP49362.2020.00033

[6] Rachit Nigam, Samuel Thomas, Zhijing Li, and Adrian Sampson. 2021. A Compiler
Infrastructure for Accelerator Generators. In Proc. of the 26th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems. 804–817. https://doi.org/10.1145/3445814.3446712

https://doi.org/10.1109/ISCA52012.2021.00025
https://mlir.llvm.org/docs/Dialects/Vector/
https://doi.org/10.1109/MM.2022.3173405
https://doi.org/10.1109/ASAP49362.2020.00033
https://doi.org/10.1145/3445814.3446712

	Abstract
	1 Introduction
	2 Structural Representation Language (SRL)
	2.1 SRL DSL
	2.2 SRL Dialect
	2.3 Lowering to UVE Assembly
	2.4 Lowering to HDL

	3 Conclusions and Future Work
	Acknowledgments
	References

