
Cascade: An Application Pipelining Toolkit for Coarse-Grained
Reconfigurable Arrays

Jackson Melchert
Stanford University

USA

Yuchen Mei
Stanford University

USA

Kalhan Koul
Stanford University

USA

Qiaoyi Liu
Stanford University

USA

Mark Horowitz
Stanford University

USA

Priyanka Raina
Stanford University

USA

ABSTRACT
While coarse-grained reconfigurable arrays (CGRAs) have emerged
as promising programmable accelerator architectures, they require
automatic pipelining of applications during their compilation flow
to achieve high performance. Current CGRA compilers either lack
pipelining altogether resulting in low application performance, or
perform exhaustive pipelining resulting in high power and resource
consumption. We address these challenges by proposing Cascade,
an end-to-end open-source application compiler for CGRAs that
achieves both state-of-the-art performance and fast compilation
times. The key contributions of this work are: (1) a novel post
place-and-route (PnR) application pipelining technique for CGRAs,
(2) a register resource usage optimization technique, and (3) an
automated CGRA timing model generator. We integrate these into
an end-to-end compilation flow that achieves 8 - 34× lower critical
path delays and 7 - 190× lower energy-delay product (EDP) across a
variety of dense image processing and machine learning workloads
compared to a compiler without pipelining.

1 INTRODUCTION
In order to achieve commercial utility, CGRAs must demonstrate
performance and energy-delay product (EDP) that are competi-
tive with application-specific integrated circuits (ASICs). To do
so, CGRAs need to execute applications at high clock frequencies,
requiring carefully pipelined applications. The problem is that ex-
isting CGRA compilers fail at this task. They attempt to tackle
mapping, scheduling, placement and routing (PnR), and pipelining
of an application all within one optimization step [3–5, 8–10]. This
coupling between the various pieces in the compilation flow makes
the search space very large, making the compilers slow, produce
poor results, and not scale well to large CGRAs.

CGRAs are typically composed of several processing element
(PE) tiles and memory (MEM) tiles arranged in a grid, as shown in
Fig. 1. The basic problem with pipelining CGRA applications is that
the programmable wiring connecting the tiles together has large
relative delay that the pipelining must take into account, but since
data waves need to be balanced, adding pipeline registers along one

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
LATTE ’24, April 28, 2024, San Diego, CA, United States
© 2024 Copyright held by the owner/author(s).

path can require adding hardware to other paths. This additional
hardware often changes the placement and routing of the CGRA,
which causes this process to restart.

To address this issue, we took inspiration from FPGA compil-
ers and decoupled mapping, scheduling, placement, routing, and
pipelining into largely independent steps. We build upon the work
presented in [6], which takes this approach but only does wire-
independent pipelining, to create a compiler called Cascade. Cas-
cade only needs minimal hardware support in the CGRA: config-
urable pipeline registers on the interconnect, an interconnect with
single-cycle multi-hop connections, and the ability to adjust the
schedules of the memory tiles at a cycle level. Using this hardware,
we add post-PnR pipelining, register absorption, and incremental
rescheduling to a staged FPGA-style compiler, resulting in state-of-
the-art application performance and compilation times.

The contributions of this paper are:
(1) We adapt FPGA and ASIC-like pipelining and register retim-

ing techniques [2, 7] to register-scarce CGRAs, and propose a
technique for absorbing registers into memory tiles without
affecting the mapping, placement, and routing.

(2) We propose a post-PnR pipelining technique that iteratively
identifies the critical path in an application, breaks it by
turning on interconnect registers, and performs rescheduling.
Post-PnR pipelining accurately accounts for interconnect
delays while avoiding cyclic rescheduling and PnR.

(3) An end-to-end open-source CGRA compiler [1], called Cas-
cade, which has (a) an automatic CGRA timing model gen-
erator, (b) a static timing analysis (STA) tool that uses the
timing model to determine the critical path of an application
on a CGRA, and (c) a large set of existing and our proposed
pipelining techniques integrated into an end-to-end flow.

PE

PEPE

PE PE PE

PE

CB

SB

SB

SB

CB

Critical 
Path 
Break

MEM

MEM

…

…

Switch Box Connection Box

Figure 1: Post-PnR pipelining takes the place and route result
represented as a dataflow graph and performs STA to identify
the critical path. This path is broken by enabling registers in
the switch box (SB), and the graph is branch delay matched.



LATTE ’24, April 28, 2024, San Diego, CA, United States Jackson Melchert, Yuchen Mei, Kalhan Koul, Qiaoyi Liu, Mark Horowitz, and Priyanka Raina

Cascade

Bitstream 
Generator

CGRA 
BitstreamRescheduler Low Unrolling 

Duplication

Dataflow 
Graph

Application 
+ CGRA 

Specification

Compute 
Mapper

Hierarchical 
Dataflow 
Graph of 
PEs and 
MEMs

Scheduler 
and MEM 
Mapper

Compiler

Compute 
Pipelining

PnR with 
Optimized 

Cost Function

Placement 
and Routing 

on CGRA

Broadcast 
Pipelining

Post-PnR 
Pipelining

Figure 2: CGRA application compiler that takes an application and a CGRA specification and produces a bitstream. Compiler
stages are blue. Intermediate representations are yellow. Bolded text indicates compiler stages added or modified in this work.

2 POST-PLACE-AND-ROUTE PIPELINING
Post-PnR pipelining, shown in Fig. 1, iteratively identifies the crit-
ical path and inserts pipelining registers to break it. After PnR is
complete, we know exactly where each tile will be placed on the
array and where the nets will be routed. Using the timing model
and application STA tool we designed for CGRAs, we determine
the critical path delay of the application. The CGRA timing model
contains delays for both the PE operations and memories, as well
as the delays of interconnect hops. Additionally, we can use STA
with back-tracing to determine what the critical path is.

Adding registers on existing routes affects the execution of the
application, so we must do branch delay matching in order to main-
tain application functionality. Branch delay matching matches the
cycle arrival times of every piece of data arriving at every functional
element in the application by adding registers on branches with
shorter delay. When adding pipeline registers to a statically sched-
uled CGRA application, the schedule needs to be updated to reflect
any changes to the compute latencies. After an application finishes
post-PnR pipelining, we know all of the compute latencies. We send
these latencies to the static scheduler to incrementally update the
configuration of each memory tile used in the application.

3 OPTIMIZING REGISTER RESOURCE USAGE
The registers added by pipelining and branch delay matching need
to be placed on the configurable interconnect. This added resource
requirement increases execution energy, and for large applications,
may cause placement or routability issues. Therefore, we introduce
a technique for absorbing registers into memory tiles and register
files that dramatically reduces the register resource usage while
maintaining the benefits of pipelining. Note that the registers we
want to remove from the configurable interconnect are only those
that are not on the critical path. These are typically introduced on
non-critical paths when we perform branch delay matching after
pipelining the critical path. A register can be “absorbed” into a
memory tile or register file in a PE tile, removing registers from the
application. Removing a single register connected to the output of
a memory tile can be achieved by scheduling the memory to start
outputting data one cycle later.

4 CASCADE
Finally, we design an end-to-end open-source CGRA compiler called
Cascade shown in Fig. 2, which like [6], has decoupled compiler
stages, but achieves higher performance. Cascade has (a) an auto-
matic CGRA timing model generator, (b) a static timing analysis
tool that uses the timing model to determine the critical path of
an application on a CGRA, and (c) a large set of existing and our
proposed pipelining techniques integrated into an end-to-end flow
that works both for dense and sparse applications.

Figure 3: Incremental effect of each software pipelining tech-
nique on the runtime and EDP of dense applications.

5 RESULTS
The CGRA architecture that we use is a 32 × 16 array with 384 PE
tiles and 128 MEM tiles. We perform physical design of the CGRA
in GlobalFoundries 12 nm technology. We analyze the incremen-
tal impact of software pipelining techniques from Section 2 and
Section 4 on the runtime of five dense applications from image
processing and machine learning domains. This is shown in Fig. 3.
The software pipelining techniques achieve an 84 - 97% decrease in
runtime versus unpipelined implementations. Compute pipelining
alone results in a 35 - 81% reduction in runtime compared to the
un-pipelined applications, while the techniques applied during and
after PnR result in an additional 48 - 85% reduction in runtime. The
pipelining techniques result in an EDP decrease of 86 - 99%.

6 CONCLUSION
Cascade is an open-source end-to-end CGRA compiler that achieves
high performance and fast compilation through the use of a decou-
pled FPGA-style compilation flow and new pipelining techniques.
Cascade achieves 8 - 34× lower critical path delays and 7 - 190×
lower EDP across a variety of dense image processing and machine
learning workloads compared to a compiler without pipelining.
While Cascade is a standalone compiler, the pipelining techniques
can be integrated into other CGRA compilers, enabling the creation
of high performance CGRA compilation infrastructure and encour-
aging research into CGRAs as promising acceleration platforms.



Cascade: An Application Pipelining Toolkit for Coarse-Grained Reconfigurable Arrays LATTE ’24, April 28, 2024, San Diego, CA, United States

7 ACKNOWLEDGEMENT
This work was supported by funding from SRC/DARPA JUMP 2.0
PRISM Center, NSF CAREER (award number: 2238006), DARPA
DSSoC, Stanford Agile Hardware (AHA) Center, Stanford SystemX
Alliance and Apple Stanford EE PhD Fellowship in Integrated Sys-
tems.

REFERENCES
[1] [n. d.]. Cascade Compiler. https://github.com/StanfordAHA/aha. Accessed:

2024-01-30.
[2] Pierre-yves Calland, Anne Mignotte, Olivier Peyran, Yves Robert, and Fred-

eric Vivien. 1998. Retiming DAGs [direct acyclic graph]. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 17, 12 (1998), 1319–1325.
https://doi.org/10.1109/43.736571

[3] Mahdi Hamzeh, Aviral Shrivastava, and Sarma Vrudhula. 2012. EPIMap: Using
Epimorphism to Map Applications on CGRAs. In Proceedings of the 49th Annual
Design Automation Conference (San Francisco, California) (DAC ’12). Association
for Computing Machinery, New York, NY, USA, 1284–1291. https://doi.org/
10.1145/2228360.2228600

[4] Manupa Karunaratne, Aditi Kulkarni Mohite, Tulika Mitra, and Li-Shiuan Peh.
2017. HyCUBE: A CGRA with Reconfigurable Single-Cycle Multi-Hop Inter-
connect. In Proceedings of the 54th Annual Design Automation Conference 2017
(Austin, TX, USA) (DAC ’17). Association for Computing Machinery, New York,
NY, USA, Article 45, 6 pages. https://doi.org/10.1145/3061639.3062262

[5] Xiangyu Kong, Yi Huang, Jianfeng Zhu, XingchenMan, Yang Liu, Chunyang Feng,
Pengfei Gou,Minggui Tang, ShaojunWei, and Leibo Liu. 2023. MapZero: Mapping
for Coarse-Grained Reconfigurable Architectures with Reinforcement Learning

and Monte-Carlo Tree Search. In Proceedings of the 50th Annual International
Symposium on Computer Architecture (Orlando, FL, USA) (ISCA ’23). Association
for Computing Machinery, New York, NY, USA, Article 46, 14 pages. https:
//doi.org/10.1145/3579371.3589081

[6] Kalhan Koul, Jackson Melchert, Kavya Sreedhar, Leonard Truong, Gedeon Nyen-
gele, Keyi Zhang, Qiaoyi Liu, Jeff Setter, Po-Han Chen, Yuchen Mei, Maxwell
Strange, Ross Daly, Caleb Donovick, Alex Carsello, Taeyoung Kong, Kathleen
Feng, Dillon Huff, Ankita Nayak, Rajsekhar Setaluri, James Thomas, Nikhil
Bhagdikar, David Durst, Zachary Myers, Nestan Tsiskaridze, Stephen Richardson,
Rick Bahr, Kayvon Fatahalian, Pat Hanrahan, Clark Barrett, Mark Horowitz,
Christopher Torng, Fredrik Kjolstad, and Priyanka Raina. 2023. AHA: An Agile
Approach to the Design of Coarse-Grained Reconfigurable Accelerators and
Compilers. ACM Trans. Embed. Comput. Syst. 22, 2, Article 35 (Jan 2023), 34 pages.
https://doi.org/10.1145/3534933

[7] Charles E. Leiserson, FlavioM. Rose, and James B. Saxe. 1983. Optimizing Synchro-
nous Circuitry by Retiming (Preliminary Version). In Third Caltech Conference
on Very Large Scale Integration, Randal Bryant (Ed.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 87–116. https://doi.org/10.1007/978-3-642-95432-0_7

[8] Bingfeng Mei, Serge Vernalde, Diederik Verkest, Hugo De Man, and Rudy
Lauwereins. 2002. DRESC: A Retargetable Compiler for Coarse-Grained Re-
configurable Architectures. In 2002 IEEE International Conference on Field-
Programmable Technology, 2002. (FPT). Proceedings. 166–173. https://doi.org/
10.1109/FPT.2002.1188678

[9] Tony Nowatzki, Michael Sartin-Tarm, Lorenzo De Carli, Karthikeyan Sankar-
alingam, Cristian Estan, and Behnam Robatmili. 2013. A General Constraint-
Centric Scheduling Framework for Spatial Architectures. SIGPLAN Not. 48, 6
(Jun 2013), 495–506. https://doi.org/10.1145/2499370.2462163

[10] Zhongyuan Zhao,Weiguang Sheng, QinWang,Wenzhi Yin, Pengfei Ye, Jinchao Li,
and Zhigang Mao. 2020. Towards Higher Performance and Robust Compilation
for CGRA Modulo Scheduling. IEEE Transactions on Parallel and Distributed
Systems 31, 9 (2020), 2201–2219. https://doi.org/10.1109/TPDS.2020.2989149

https://github.com/StanfordAHA/aha
https://doi.org/10.1109/43.736571
https://doi.org/10.1145/2228360.2228600
https://doi.org/10.1145/2228360.2228600
https://doi.org/10.1145/3061639.3062262
https://doi.org/10.1145/3579371.3589081
https://doi.org/10.1145/3579371.3589081
https://doi.org/10.1145/3534933
https://doi.org/10.1007/978-3-642-95432-0_7
https://doi.org/10.1109/FPT.2002.1188678
https://doi.org/10.1109/FPT.2002.1188678
https://doi.org/10.1145/2499370.2462163
https://doi.org/10.1109/TPDS.2020.2989149

	Abstract
	1 Introduction
	2 Post-Place-and-Route Pipelining
	3 Optimizing Register Resource Usage
	4 Cascade
	5 Results
	6 Conclusion
	7 Acknowledgement
	References

