
PipeGen: Automatically Transforming a Single-Core Pipeline into
a Multi-core Pipeline Enforcing a given Memory Model

An Qi Zhang
University of Utah

USA

Andrés Goens
University of Amsterdam

The Netherlands

Nicolai Oswald
Nvidia
USA

Tobias Grosser
University of Cambridge

UK

Daniel Sorin
Duke University

USA

Vijay Nagarajan
University of Utah

USA

ABSTRACT
Designing a pipeline for a processor core is difficult. One major
challenge is designing it such that it can be composed with other
cores, while correctly enforcing the intended memory consistency
model (MCM). Our goal is to allow architects to start with a single
core pipeline that only enforces single-threaded correctness and
automatically transform it to enforce a given MCM. This paper
discusses the opportunity and challenges involved and our current
progress in achieving this goal.

1 INTRODUCTION
Designing a modern, high-performance processor pipeline is a dif-
ficult challenge. In the pursuit of performance, cores often seek
additional improvements by executing instructions out-of-order.
Out-of-order execution must not affect single-threaded functional-
ity, though, and thus microarchitects use structures like the reorder
buffer (ROB) and load-store queue (LSQ) to ensure the illusion of
in-order behavior for a given thread.

In addition to single-threaded correctness, another key chal-
lenge is ensuring that a processor comprised of multiple high-
performance coresmaintains the desiredmemory consistencymodel
(MCM). It is very difficult to reason about the possible interleav-
ings of reads (loads) and writes (stores) across threads on different
cores and whether they are allowed by the MCM. An architect may
design an optimization but fail to realize its full potential on the
enforced MCM [8], or more worryingly, make a design error that
leads to the desired MCM no longer being enforced [5, 6].

In this paper, we advocate for addressing this design challenge
with automation. Specifically, we propose that an architect should
be able to design a pipeline in an MCM-oblivious fashion, needing
only to enforce single-threaded correctness. The automation should
then transform that pipeline into a multi-core pipeline that enforces
the specified MCM (Figure 1). A key insight is that we can achieve
this automation as code transformations in a domain-specific lan-
guage (DSL), borrowing methods from compiler design.

We now discuss each aspect of the desired flow—inputs, trans-
formation algorithms, and outputs—including our current solutions
and open questions.

2 INPUTS
Given anMCM-oblivious pipeline, a transformation algorithmmust
be able to identify the key microarchitectural sub-operations of
a memory operation. (Memory operations are loads, stores, read-
modify-writes, and fences). For example, the sub-operations of a

Figure 1: Automation goal: Given a pipeline in our DSL that
correctly enforces single-threaded correctness, and a desired
MCM, we automatically enforce the required MCM via three
transformations that codify three different ways of enforcing
memory ordering at the pipeline

load in a high-performance core include: being dispatched to the
ROB and LSQ, being issued to the memory system once its address
has been computed, speculatively writing to the register file the
result it receives from the memory system, and being committed.
Why do we need to identify the sub-operations? At its heart, en-
forcing memory ordering at the pipeline is all about controlling
when and how these sub-operations occur.

In theory, an architect could specify the core pipeline using any
language for expressing finite state machines. Verilog, BlueSpec,
and Murphi [2], for example, would all suffice. However, none of
these general-purpose languages would make it easy for an auto-
mated tool to identify the sub-operations that matter for enforcing
MCMs. We could either mandate a restricted, stylized version of
one of these languages or use a domain-specific language (DSL),
and we have chosen the latter.

We have developed a DSL that enables the architect to model the
core pipeline as an interconnected group of structures that each
have some number of entries. These structures include the Reorder
buffer (ROB), Load-store-queue (LSQ), instruction queue, etc. Each
entry is logically a state machine; the entry has a state, and an
event can cause an action and possibly a transition of that entry to
new state. Importantly, the DSL also enables the architect to label
where sub-operations occur. Our DSL enables relatively high-level
specifications that focus on functionality more than cycle-accurate
behavior.

Our DSL suffices for the automation we are doing, but questions
remain. It is not clear that users will find a DSL preferable to a
version of an already established language. We also do not know
whether our DSL suffices for any type of core. We have explored a
variety of cores (e.g., with different structures for speculative load
execution) and a variety of mechanisms for transforming cores,

An Qi Zhang, Andrés Goens, Nicolai Oswald, Tobias Grosser, Daniel Sorin, and Vijay Nagarajan

but that does not guarantee that all possible core types or trans-
formations will be expressible with our current DSL. Lastly, one
can imagine specifying cores at varying degrees of detail; our cur-
rent DSL is high-level, which may or may not suffice for certain
purposes.

3 ALGORITHMS
Akin to a compiler, the core of our automation flow consists of
algorithms for analyzing the input design and transforming it to
enforce the desired MCM.

3.1 Analysis
The DSL, in both its format and its labeling features, facilitates
automated analysis of the flow of memory operations through the
core. The analysis algorithms can determine which core structures
each operation passes through and what sub-operations occur in
which structures. Furthermore, when a memory operation resides
in a structure (e.g., LSQ), it has a state that can change due to a sub-
operation, and the analysis algorithms can determine the sequence
of states that a memory operation will traverse during its lifetime.

For example, for a “typical" out-of-order core, the analysis algo-
rithms might determine that a load begins in the instruction queue
(IQ), is dispatched into the ROB and LSQ, is issued to the memory
system from the LSQ, has its result written into the LSQ (changing
its entry’s state in the LSQ), and then is committed by removing it
from the LSQ and ROB.

3.2 Transformation
The transformation algorithms use the results of the analysis algo-
rithms to determine what to do. We consider the transformations
to effectively be compiler passes that perform source-to-source
transformation. Currently, we have three types of transformations
codifying three ways of enforcing memory ordering: adding stalls
in the pipeline for enforcing ordering, detecting MCM violations
via coherence tracking [3], and detecting MCM violations via load
replays [3]. Given anMCM and a pipeline enforcing single-threaded
correctness, these transformations can be used to ensure that the
resulting output pipeline maintains that MCM.

Stall transformations are the most intuitive, in that they prevent
something from happening that could violate the desired MCM.
For example, an MCM could prohibit load-to-load reordering to
different addresses, which is legal for an MCM-oblivious core. The
stall transformation could stall a load from issuing to the memory
system until its predecessor load (in program order) has completed,
thus eliminating the possibility of those loads appearing out of
order. Implementing a stall simply requires knowing at what point
an operation becomes visible beyond the core.

The coherence tracking transformation adds a structure to the
MCM-oblivious core to record the addresses of speculative loads
that have been issued but not committed. This load address track-
ing structure is connected to the memory system such that it can
receive coherence requests that invalidate blocks. If a coherence
request invalidates a block that is in the address tracking struc-
ture, the corresponding load must be considered misspeculated
in certain MCMs. For this transformation to be viable, we must

have a mechanism for squashing a given instruction and its suc-
cessors in program order. Our DSL enables the architect to specify
how to trigger misspeculation logic; it is the same logic as that
used for recovering the MCM-oblivious core from (single-thread)
misspeculation.

The load replay transformation adds logic to the MCM-oblivious
core to re-issue each load to the memory system at commit time and
compare the values of the two loads. If they differ, the loads could
have been visible out of order, and thus any instructions after the
load must be considered misspeculated in an MCM that prohibits
load-to-load reordering. As with the previous transformation, it
must use the MCM-oblivious logic for squashing to recover from
misspeculation.

We have not exhausted the space of possible transformations.
Our current set of transformations reflects how past architects
have manually ensured their cores satisfy their MCMs, but it is
possible that other transformations exist that do not have existing
analogs. However, even if a tool’s transformations just implement
known MCM enforcement schemes, doing so automatically for a
given pipeline offers a considerable reduction in complexity and
opportunity for design bugs. (This is analogous to how compiler
optimization passes are a win.)

4 OUTPUTS
The output of our automated tool is an MCM-aware core design,
specified at the same level of abstraction as the MCM-oblivious
core that was input to the tool. As with the input, it is a finite state
machine that could be described in any of a variety of backends.
Currently, our tool produces its output in the language of the Mur-
phi model checker [2]. This output format is convenient, in that
it enables us to model check our results and confirm that they are
functionally correct. We can imagine providing other backends for
the tool, such as Verilog and C++ code to plug into a simulator such
as gem5 [7].

5 RESULTS
We have modeled three very different single-core out-of-order
pipelines as inputs: theHennessy and Patterson load-store-queue [4],
the No-Store-Queue design [9], and the unified load/store queue [1].
Each of these single-core processors enforce only single-core cor-
rectness. We then applied our three transformation to enforce the
TSO and the ARM memory consistency model. We then validated
the generated Murphi models against several litmus tests in the
model checker, and our results show that our generated designs
enforced correctness while allowing for most of the weak behav-
iors permitted by these two memory models. Specifically, we ran 4
litmus tests against the generated multi-core-ready TSO pipelines
(Message Passing, Dekker, N7, and Dekker with a mFence) validat-
ing that the three transformations correctly enforce TSO. Against
the ARM multi-core-ready pipelines, we ran 11 litmus tests (Mes-
sage Passing, Dekker, N7, and variations of Message Passing and
Dekker with ARM’s additional memory ordering load acquire, store
release, and DMB instructions). Here, the DMB fences enforced
by our transformations are stronger, as we enforce fences as two
orderings, between the pre-fence instructions with the fence, and
the fence and post-fence instructions.

PipeGen: Automatically Transforming a Single-Core Pipeline into a Multi-core Pipeline Enforcing a given Memory Model

REFERENCES
[1] Harold W Cain and Mikko H Lipasti. 2004. Memory ordering: A value-based

approach. ACM SIGARCH Computer Architecture News 32, 2 (2004), 90.
[2] David L. Dill. 1996. The Mur𝜑 Verification System. In International Conference on

Computer Aided Verification (CAV). 390–393.
[3] Kourosh Gharachorloo, Anoop Gupta, and John Hennessy. 1991. Two Techniques

to Enhance the Performance of Memory Consistency Models. In Proceedings of
the International Conference on Parallel Processing, ICPP ’91, Austin, Texas, USA,
August 1991. Volume I: Architecture/Hardware. CRC Press, 355–364.

[4] John L. Hennessy and David A. Patterson. 2011. Computer Architecture, Fifth
Edition: A Quantitative Approach (5th ed.). Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA.

[5] George Kurian, Omer Khan, and Srinivas Devadas. 2013. The locality-aware
adaptive cache coherence protocol. In Proceedings of the 40th Annual International
Symposium on Computer Architecture. 523–534.

[6] Doowon Lee. 2018. Decompose and Conquer: Addressing Evasive Errors in Systems
on Chip. Ph. D. Dissertation.

[7] Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad Alian, Rico
Amslinger, Matteo Andreozzi, Adrià Armejach, Nils Asmussen, Srikant Bharadwaj,
Gabe Black, Gedare Bloom, Bobby R. Bruce, Daniel Rodrigues Carvalho, Jerón-
imo Castrillón, Lizhong Chen, Nicolas Derumigny, Stephan Diestelhorst, Wendy

Elsasser, Marjan Fariborz, Amin Farmahini Farahani, Pouya Fotouhi, Ryan Gam-
bord, Jayneel Gandhi, Dibakar Gope, Thomas Grass, Bagus Hanindhito, Andreas
Hansson, Swapnil Haria, Austin Harris, Timothy Hayes, Adrian Herrera, Matthew
Horsnell, Syed Ali Raza Jafri, Radhika Jagtap, Hanhwi Jang, Reiley Jeyapaul, Tim-
othy M. Jones, Matthias Jung, Subash Kannoth, Hamidreza Khaleghzadeh, Yuetsu
Kodama, Tushar Krishna, TommasoMarinelli, ChristianMenard, AndreaMondelli,
Tiago Mück, Omar Naji, Krishnendra Nathella, Hoa Nguyen, Nikos Nikoleris,
Lena E. Olson, Marc S. Orr, Binh Pham, Pablo Prieto, Trivikram Reddy, Alec Roelke,
Mahyar Samani, Andreas Sandberg, Javier Setoain, Boris Shingarov, Matthew D.
Sinclair, Tuan Ta, Rahul Thakur, Giacomo Travaglini, Michael Upton, Nilay Vaish,
Ilias Vougioukas, Zhengrong Wang, Norbert Wehn, Christian Weis, David A.
Wood, Hongil Yoon, and Éder F. Zulian. 2020. The gem5 Simulator: Version 20.0+.
CoRR abs/2007.03152 (2020). arXiv:2007.03152 https://arxiv.org/abs/2007.03152

[8] Milo MKMartin, Daniel J Sorin, Harold W Cain, Mark D Hill, and Mikko H Lipasti.
2001. Correctly implementing value prediction in microprocessors that support
multithreading or multiprocessing. In Proceedings. 34th ACM/IEEE International
Symposium on Microarchitecture. MICRO-34. IEEE, 328–337.

[9] Tingting Sha, Milo MK Martin, and Amir Roth. 2006. Nosq: Store-load com-
munication without a store queue. In 2006 39th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO’06). IEEE, 285–296.

https://arxiv.org/abs/2007.03152
https://arxiv.org/abs/2007.03152

	Abstract
	1 Introduction
	2 Inputs
	3 Algorithms
	3.1 Analysis
	3.2 Transformation

	4 Outputs
	5 Results
	References

