
(Please Build) an Accelerator Zoo
Katie Lim

katielim@cs.washington.edu
University of Washington

Matthew Giordano
mgiordan@cs.washington.edu
University of Washington

Jonathan Balkind
jbalkind@ucsb.edu
UC Santa Barbara

ABSTRACT
Building accelerator tooling and frameworks runs into a chicken
and egg problem: it is hard to build accelerators without this infras-
tructure, but it is difficult to evaluate the usefulness of infrastructure
without concrete, end-to-end examples using an application accel-
erator. This paper makes the argument for an "accelerator zoo" to
break this cycle, lays out guidelines for accelerators that would be
good for the zoo, and poses some open questions for the implemen-
tation of this framework.

1 INTRODUCTION
Alongside the proliferation of accelerators, work into better frame-
works and infrastructure to support accelerators and ease deploy-
ment has also grown [6–8, 11]. When one builds a shiny new in-
frastructure prototype, the next step is convincing people it is good.
This means carefully selecting accelerator examples to showcase
both the quantitative performance of the framework as well as
unmeasurable qualitative features such as generality. This is a diffi-
cult space to navigate with many trade-offs. For example, there is
typically a compromise between the complexity of the accelerator
and the cost of integrating it into your framework. If the accelera-
tor for the end-to-end evaluation is perceived as too simple, it is
considered a toy example and there are doubts about its ability to
support realistic applications. However, if the accelerated applica-
tion is complex, and the accelerator does not perform well, one
then needs to performance debug the application as well as the
framework lest the results can become "distracting" with the focus
turning to the accelerator performance rather than the framework.

This problem is not unique to hardware, but is exacerbated by
the nascent nature of the field. In the software world, new systems
software infrastructure projects will typically integrate with a well-
known open-source project such as Redis [2], RocksDB [4], or
memcached [1]. These projects are complex, reasonably optimized,
and readily available. What should we do in the world of hardware
where open example accelerators are few and far between? How can
we avoid our case studies being labelled as "toys" without putting
in enough work to warrant a second paper?

We advocate for building an accelerator zoo, a collection of
portable, high-quality accelerators ready to be used within accel-
erator infrastructure. This is akin to the model zoos in machine
learning which are often provided to help jumpstart projects. In
the rest of this paper, we first discuss the current workflow and
pain points that we have observed when trying to construct end-to-
end experiments for various projects. We then describe guidelines
around "zoo-friendly" accelerators that prioritize reusability. Finally,
we propose some open questions around realizing this zoo.

LATTE ’24, April 28, 2024, San Diego, CA, USA

2 CURRENT STATE OF AFFAIRS
Imagine setting out to include an accelerator for evaluation. The
first step is finding an accelerator. So where does one look right
now? How can one find a new accelerator in the wild?

One way to start is to search sites like GitHub or OpenCores.
This turns up a variety of different examples that vary vastly in
code quality and complexity, ranging from a college student’s class
project to industrial-strength projects like Ariane/CVA6 [12] or
NVDLA [10]. Finding one that might be workable involves wading
through search results, trying to assess both code quality and how
to use the accelerator. This typically involves reading the documen-
tation, if there is any, and definitely reading code. This vetting has
high overhead in terms of time and once an accelerator has been
selected it still needs to be integrated.

Integration is a highly ad-hoc, one-off process specific to every
accelerator that involves both figuring out how to connect it at
the hardware level as well as what it expects when executing a
computation. Sometimes an accelerator may contain enough docu-
mentation to understand how to connect signals to its hardware
interface. But the vast majority of the time, one ends up reading
code. If one is lucky, there is a good quality testbench. If not, it
is necessary to dive into the HDL of the application logic itself.
During the integration, one can find out that the accelerator does
not actually perform as expected or even run correctly. The options
then are either to try to debug the code or circle back to step one
and search again.

This process is clearly time-consuming. A significant amount
of work already goes into building the research prototype for the
idea itself and having to unearth suitable accelerators makes the
process of evaluation onerous. Ultimately this hinders progress of
the development of tools and frameworks that would make building
accelerators easier.

3 ACCELERATOR GUIDELINES
Our hope is that an accelerator zoo can curate a variety of accel-
erators ranging from traditional hardware computational atoms,
such as FFTs, to complex implementations of traditionally software
applications such as a key-value store. The goal of these guidelines
is to set out how to make an accelerator friendly to portability
to maximize the number of scenarios it can be used in. This may
occasionally requiring prioritizing portability over performance
or area. This may be at odds with the goals of certain accelerator
implementations. In the same way that certain animals are not
zoo-friendly because they require specialized conditions, certain
accelerators may not be zoo-friendly.

While certain pre-existing frameworks, such as OpenCL, can
provide solutions to some of these problems, it can be burdensome
or simply not make sense to support these frameworks, so building
too closely to these frameworks can inadvertently make portability
more challenging.



LATTE ’24, April 28, 2024, San Diego, CA, USA Lim et al.

3.1 Data Interface
The data interface to the accelerator is the most basic place to
start. If inputs cannot be fed to the accelerator, there will be no
computation.

For composability and generality, latency insensitive interfaces
are a must. Supporting latency sensitive accelerators requires the
whole framework to be engineered specifically to support a particu-
lar implementation, which restricts generality. There are a number
of protocols that provide this kind of interface, such as AXI-stream,
AXI-lite, Avalon, ect.. We do not intend to propose use of a certain
protocol, because it is generally possible to transduce between pro-
tocols. Furthermore, even adhering to one protocol does not guar-
antee compatibility between interfaces. For example, AXI-stream’s
tkeep signal can permit non-contiguous valid data on a bus [3].
This means that two designs both with an AXI-stream interface can
be incompatible with each other depending on how they treat the
tkeep bits. Thus, accelerators should strive to keep their latency-
insensitive interfaces as generic as possible.

Accelerators generally consume data either as an input stream
or from data at rest stored in a memory of some sort, such as a
cache or scratchpad.While support for scratchpads should generally
be straightforward, caches typically requires more thought since
the expectation is that caches are coherent, which places more
requirements on the overall system. If an accelerator is designed
to expect a cache-coherent system, it should be designed such that
the cache can be separated from the accelerator, and the accelerator
should not rely on specific timing from the cache.

3.2 I/O Usage
While certain ideas can be evaluated purely through simulation,
others need to be prototyped on FPGAs or even taped out. In this
case, we have to consider the I/O used by the accelerator. FPGAs
have vastly different I/O capabilities ranging from speed of I/O,
such as 1 Gbit Ethernet vs 100 Gbit Ethernet, to types of I/O, such
as the presence or absence of DRAM or the use of PCIe (or AXI) to
connect to a hosting CPU or directly to host memory.

Accelerators should be agnostic to the I/Owhenever possible. For
example, DRAM buffers should be replaceable with large BRAMs.
While this may vastly change performance characteristics or sup-
ported input size, it enables designs to be used in a variety of
different scenarios where certain I/O may not be available. It can
also ease experimentation with new I/O types, such as replacing
DRAM with some form of non-volatile storage or changing from
DRAM accessible via DMA over PCIe to DRAM accessible using
CXL.mem.

3.3 Configuration and Management
Alongside data operations, accelerators often have control inter-
faces that allow setting certain runtime parameters that modify
their function, such as input dimensions for image processing or
the key for encryption. There are a myriad of methods to provide
this interface.

The method depends on how the accelerator is integrated into
the larger system. A tightly-coupled accelerator might use configu-
ration registers written by the core’s pipeline. Meanwhile, an accel-
erator connected over AXI/NoC/PCIe might use memory-mapped

I/O where the configuration registers are assigned addresses. These
mechanisms come with a variety of constraints and result in the
need for cores to understand the (non-)cacheability or side effects of
the requisite MMIO accesses. This information must be thoroughly
documented to make the accelerators suitable for zookeeping. Some
accelerators may also expect interrupts. However, if interrupts are
supported, polling should also be supported, because not every
framework will have support for interrupts.

3.4 Supporting Software
Hosting an accelerator for operation can be complex. Many acceler-
ators operate in tandem with a driver to prepare data for them [5, 9]
or perform other operations, such as interacting with a host oper-
ating system. This software should be designed keeping in mind
that the communication layer may change. For example, for a CPU-
accelerator system on a single node, the hardware interconnect
itself may be different. Zynq systems use an AXI bus, but there
are many PCIe FPGA cards, and CXL.cache devices are becoming
available. Particularly pertinent to a research oriented setting, the
interconnect could be none of these and could instead be a new
proposed interconnect under development.

Through standard software engineering principles of abstraction,
what the software is doing for the accelerator should be separated
from how the communication happens to allow for isolation of
communication-medium specific code. This will hopefully reduce
the amount of effort necessary to port an accelerator’s supporting
software to a new architecture.

4 OPEN QUESTIONS
Should there be a preferred HDL? While it would be preferable
to use a newer HDL for readability and productivity, we want to
avoid running into a situation where accelerators are suddenly un-
usable due to a new version of the language, require large software
stacks to be generated, or depend very heavily on a certain version
of an HDL. The only real requirement is that the HDL should be
able to generate either Verilog or VHDL, so it can be fed to stan-
dard hardware tool chains. Ideally this code should also be human
readable.
What framework can be or needs to be provided by the zoo
itself? Themodels in model zoos are often trained to be used within
a certain ML framework (e.g. TensorFlow or Pytorch). Our use case
is a little different in that we are trying to build the zoo to allow
for experimentation across frameworks, both existing and those
that have yet to be developed. Should the zoo try to provide some
software driver and FPGA or ASIC infrastructure that could be used
across all accelerators?
Are there current accelerators meeting this requirement?
This is more of a solicitation than a question, but it would be ideal
to leverage preexisting accelerators as much as possible and either
augment or make minimal modifications to make them more suit-
able. We have a small set, but they are typically smaller examples
which some reviewers have considered “toy” examples.
How do we incentivize this work? Zookeeping the collected
accelerators will require both curation and upkeep. How do we
incentivise people to want to take up this responsibility?



(Please Build) an Accelerator Zoo LATTE ’24, April 28, 2024, San Diego, CA, USA

REFERENCES
[1] [n. d.].Memcached. RetrievedMarch 8, 2024 fromhttps://github.com/memcached/

memcached
[2] [n. d.]. Redis. Retrieved March 8, 2024 from https://github.com/redis/redis
[3] ARM. [n. d.]. AMBA AXI-Stream Protocol Specification. Retrieved March 8, 2024

from https://developer.arm.com/documentation/ihi0051/latest/
[4] Facebook. [n. d.]. RocksDB. Retrieved March 8, 2024 from https://github.com/

facebook/rocksdb
[5] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,

Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle,
Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt
Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati,
William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu,
Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander
Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve
Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle
Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran
Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie,
Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross,
Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham,
Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo
Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang,
Eric Wilcox, and Doe Hyun Yoon. 2017. In-Datacenter Performance Analysis of a
Tensor Processing Unit. In Proceedings of the 44th Annual International Symposium
on Computer Architecture (Toronto, ON, Canada) (ISCA ’17). Association for
Computing Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/
3079856.3080246

[6] Dario Korolija, Timothy Roscoe, and Gustavo Alonso. 2020. Do OS abstractions
make sense on FPGAs?. In 14th USENIX Symposium on Operating Systems Design

and Implementation (OSDI 20). USENIX Association, 991–1010. https://www.
usenix.org/conference/osdi20/presentation/roscoe

[7] Joshua Landgraf, Matthew Giordano, Esther Yoon, and Christopher J. Rossbach.
2023. Reconfigurable Virtual Memory for FPGA-Driven I/O. In Proceedings of
the 28th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3 (Vancouver, BC, Canada) (ASPLOS
2023). Association for Computing Machinery, New York, NY, USA, 556–571.
https://doi.org/10.1145/3582016.3582048

[8] Jiacheng Ma, Gefei Zuo, Kevin Loughlin, Xiaohe Cheng, Yanqiang Liu, Abel Mu-
lugeta Eneyew, Zhengwei Qi, and Baris Kasikci. 2020. A Hypervisor for Shared-
Memory FPGA Platforms. In Proceedings of the Twenty-Fifth International Confer-
ence on Architectural Support for Programming Languages and Operating Systems
(Lausanne, Switzerland) (ASPLOS ’20). Association for Computing Machinery,
New York, NY, USA, 827–844. https://doi.org/10.1145/3373376.3378482

[9] Thierry Moreau, Tianqi Chen, Ziheng Jiang, Luis Ceze, Carlos Guestrin, and
Arvind Krishnamurthy. 2018. VTA: An Open Hardware-Software Stack for Deep
Learning. CoRR abs/1807.04188 (2018). arXiv:1807.04188 http://arxiv.org/abs/
1807.04188

[10] NVIDIA. [n. d.]. NVIDIA Deep Learning Accelerator. http://nvdla.org/.
[11] Tianrui Wei, Nazerke Turtayeva, Marcelo Orenes-Vera, Omkar Lonkar, and

Jonathan Balkind. 2023. Cohort: Software-Oriented Acceleration for Hetero-
geneous SoCs. In Proceedings of the 28th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, Volume 3
(Vancouver, BC, Canada) (ASPLOS 2023). Association for Computing Machinery,
New York, NY, USA, 105–117. https://doi.org/10.1145/3582016.3582059

[12] F. Zaruba and L. Benini. 2019. The Cost of Application-Class Processing: Energy
and Performance Analysis of a Linux-Ready 1.7-GHz 64-Bit RISC-V Core in
22-nm FDSOI Technology. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 27, 11 (Nov 2019), 2629–2640. https://doi.org/10.1109/TVLSI.2019.
2926114 https://github.com/openhwgroup/cva6.

https://github.com/memcached/memcached
https://github.com/memcached/memcached
https://github.com/redis/redis
https://developer.arm.com/documentation/ihi0051/latest/
https://github.com/facebook/rocksdb
https://github.com/facebook/rocksdb
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1145/3079856.3080246
https://www.usenix.org/conference/osdi20/presentation/roscoe
https://www.usenix.org/conference/osdi20/presentation/roscoe
https://doi.org/10.1145/3582016.3582048
https://doi.org/10.1145/3373376.3378482
https://arxiv.org/abs/1807.04188
http://arxiv.org/abs/1807.04188
http://arxiv.org/abs/1807.04188
http://nvdla.org/
https://doi.org/10.1145/3582016.3582059
https://doi.org/10.1109/TVLSI.2019.2926114
https://doi.org/10.1109/TVLSI.2019.2926114
https://github.com/openhwgroup/cva6

	Abstract
	1 Introduction
	2 Current state of affairs
	3 Accelerator Guidelines
	3.1 Data Interface
	3.2 I/O Usage
	3.3 Configuration and Management
	3.4 Supporting Software

	4 Open Questions
	References

