
A Case for In-situ Hardware Development
Alborz Jelvani
Rutgers University

USA

Richard P. Martin
Rutgers University

USA

Santosh Nagarakatte
Rutgers University

USA

ABSTRACT
Existing hardware design tools have failed to create an environ-
ment to support rapid hardware development cycles. Hardware
simulators attempt to close this gap by allowing familiar software
debugging techniques to be used for simulation, yet debugging
for in-hardware deployment still relies on primitive tools such as
logic analyzers. We propose the integration of familiar software-
based debugging conveniences for in-hardware development. The
evaluation of a preliminary prototype is also presented.

1 INTRODUCTION
The differences between hardware and software development are
stark. Software development has evolved into a diverse ecosystem,
housing various instruments to enable incremental development
through a rapid edit-compile-debug loop. Hardware development,
by contrast, involves at least three separate phases, each lacking
diverse tools: simulation, FPGA validation, and final tape-out.

Simulation is often a key step for pinpointing behavioral bugs in
a design, and while correct simulation of a design is necessary, it is
not sufficient. Not only is simulating large designs infeasible via
software, but for many applications the final realization is an FPGA,
as product requirements and sales volume may not justify an ASIC.
Unfortunately, the length of the edit-compile-debug loop on FPGA’s
is much longer than software development. Hardware synthesis can
take on the order of hours rather than seconds typical for software
compilation. Additionally, in-situ debugging for FPGA’s relies on
primitive tools such as log-based tracing and logic analyzers. In ef-
fect, the edit-compile-debug loop cannot support rapid incremental
development, which hinges on the ability to rapidly iterate over two
steps: (1) making an observation and (2) implementing a change.

Our work proposes bringing rapid development cycles to the
FPGA workflow through quicker edit-compile-debug cycles. To
enable this, in-situ debugging is necessary, as opposed to using
simulation. Key features an in-situ debugger should provide include
the ability to pause and restart execution, examine and modify state
at the source code level, and observe the effects of incremental
changes with low latency.

2 EXISTING DEBUGGING APPROACHES
A common approach for in-situ development is trace-based debug-
ging via tools such as Intel’s Signal Tap and Xilinx’s ILA IP blocks.
While these tools allow a developer to view the state of hardware,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
LATTE ’24, April 27-28, 2024, San Diego, California, USA
© 2024 Copyright held by the owner/author(s).

and even replay state transitions later in software, the developer can-
not interact with the design logic during a live debugging session,
and any incremental design changes are accompanied with a high
latency compilation. Recent works [3, 6] have explored trace-based
debugging techniques that provide debugging of communication
protocols and finite state machines, however, these tools cater to
the ex post facto model of incremental development, where effects
of computation are observed after a complete execution phase. We
advocate for in-situ interactive debugging workflows, similar to the
work proposed in [1, 4] - with key differences being support for in-
cremental development and source-level debugging. Without both
interactive debugging and incremental development support, ineffi-
cient debugging and compilation phases will bottleneck hardware
development cycles.

To this end, we propose instrumenting hardware designs with
debugging logic. However, unlike traditional approaches that use
the instrumented logic only for state visibility, we advocate for
instrumenting a debugging engine into the users design that is
capable of hardware simulation. Combined with logic to pause the
design clock, modify hardware state, and rapidly observe code mod-
ifications, support for incremental hardware development can be
achieved by shortening the edit-compile-debug cycle. Our approach
relies on a synchronous paradigm, but synchronous designs are by
far the most common.

3 DEBUGGING ENGINE
Our debugging engine consists of three main components: A de-
sign controller, a simulator core, and a command interface. These
components facilitate interaction of user with design and enable
low-latency compilation during incremental development.

3.1 Design Controller
The design controller is responsible for interacting with debug logic
that is automatically instrumented during compile time. To a large
extent, this includes logic for halting the design clock, reading/writ-
ing to registers, and setting breakpoints or watchpoints. To halt the
design clock, a compiler pass replaces each hardwaremodule’s clock
input with a virtual clock that is controlled by the design controller
and interacted with through the command interface. Additionally,
a compiler pass wires registers of interest in each module to a mul-
tiplexer in the design controller, controlled through the command
interface. Breakpoints and watchpoints are implementable through
latches that halt the design clock on programmable triggers.

3.2 Simulator Core
To lower compile latency in the edit-compile-debug cycle, the de-
bugging engine should be equipped with a simulator core capable
of simulating hardware. This is useful during incremental develop-
ment, as the debugging engine can support a behavioral recompila-
tion - when design modification effects are propagated to existing

LATTE ’24, April 27-28, 2024, San Diego, California, USA Alborz Jelvani, Richard P. Martin, and Santosh Nagarakatte

hardware logic via co-simulation. This means the effects of an in-
cremental change can be observed almost instantaneously, as it
involves only a software recompilation. Behavioral recompilation
can operate at the module granularity, which would offload HDL
modules to the simulator post-modification. To decrease module
fragmentation, static analysis can be used to identify fine-grained
areas of code that require behavioral recompilation. An example
of this mechanism is demonstrated in the following Verilog snip-
pet adopted from a real bug found on GitHub in an open-source
hardware library implementing IEEE 754 floating-point units [2].

1 always @(posedge clk) begin

2 z[22:0] <= z_m [22:0];

3 z[30:23] <= z_e [7:0] + 127;

4 z[31] <= z_s;

5 if ($signed(z_e) == -126 && z_m [23] == 0) begin

6 z[30:23] <= 0;

7 end

8 + if ($signed(z_e) == -126 && z_m [23:0] == 24'h0) begin

9 + z[31] <= 1'b0; // set sign bit to 0

10 + end

11 //if overflow occurs , return inf

12 if ($signed(z_e) > 127) begin

13 z[22:0] <= 0;

14 z[30:23] <= 255;

15 z[31] <= z_s;

16 end

17 end

This Verilog snippet is responsible for handling the addition of
floating-point values. The bug results in the incorrect handling
of addition for canceling terms, and is caused by the absence of
the highlighted code. As defined in the floating-point standard,
−𝑎 + 𝑎 = +0. Without the highlighted code, the sign bit of the
floating-point value remains 1, which denotes a negative value
even if the mantissa bits are all 0. This causes −𝑎 + 𝑎 to evaluate to
−0.

An incremental change to a design such as this floating-point
adder can be reflected inside hardware instantaneously, as the de-
sign controller has scaffolding in place to access the register z[31].
The added clause on line 8 can run in the simulator core alongside
the faulty HDL module as follows:

(1) A hardware watchpoint is set for the clause on line 8.
(2) Upon a trigger, the virtual clock is paused, current register

values are read, and any logic inside the clause is simulated
for 1 cycle.

(3) Simulation side-effects (z[31] <= 1’b0) are propagated to
corresponding hardware registers and the virtual clock is
resumed.

This effectively allows instantaneous modification of hardware
at a fine-grained granularity rather than through course-grained
fragmentation at module granularity, thus increasing usage of use-
ful hardware resources. An overview of this mechanism is presented
in Figure 1.

3.3 Command Interface
The command interface allows interaction and communication with
the debugging infrastructure, and consists of two components: a
client and a host.

z[31]

Design Clock

Virtual Clock

if ($signed(z_e) == -126 && z_m[23:0] == 24'h0) begin
z[31] <= 1'b0;

end

1 2 3
Simulator

Core

Figure 1: Simulator core operations on a faulty floating-point
adder. (1) Hardware logic begins execution on the z register.
(2) A hardware watchpoint pauses the virtual clock after a
clause trigger; the z register is read into simulation. (3) Sim-
ulation executes; the new value of z is written to hardware.

Client side: This is the traditional debugging shell software de-
velopers are familiar with, such as that of GDB. During a debugging
session, the value of individual design registers can be observed
and modified. Breakpoints and watchpoints can also be inserted for
various signals. Unlike software debuggers, which abstract event
processing through the program counter, the interface for a hard-
ware debugger requires multiple abstraction proxies, such as one
that processes events through clock edges and another through
source-level hotspots - areas of code contributing to state changes.
These abstraction proxies are useful as hardware behavior can in-
herently be viewed as signals that evolve over time, and also as
control of data flow: FSMs, pipelines, and I/O. Implementing ab-
straction proxies is enabled through the design controller’s ability
to access registers and control the design clock. For instance, con-
trol flow stepping for an FSM can operate by setting a watchpoint
on the state signal of the FSM. This allows the design controller
to step the virtual clock until the watchpoint on the state signal is
triggered.

Host side: The host for the command interface consists of com-
munication logic used in the debugging engine as well as a com-
mand execution unit. The host should implement a concise but rich
command set that is usable by the client interface for implementing
debugging abstractions. This command set should also support the
handling of subprograms - specifications of hardware modifications
that require behavioural recompilation.

4 EVALUATION
Our prototype, hddb (hardware development debugger), is an open-
source1 hardware debugger that includes a compiler for injecting a

1https://github.com/Jelvani/hddb

https://github.com/Jelvani/hddb

A Case for In-situ Hardware Development LATTE ’24, April 27-28, 2024, San Diego, California, USA

Configured vector dimension (32-bit width)

Lo
ok

up
 ta

bl
es

 u
se

d

0

10,000

20,000

30,000

40,000

16 24 32 40 48

Baseline Baseline + hddb

Figure 2: hddb resource overheads for a parameterized vector
processing unit core as reported by Yosys version 0.33.

hardware debug engine into designs and a client debugging inter-
face for interacting with the debugging engine. Currently, hddb sup-
ports stepping of the design clock and reading/writing to hardware
registers; in the future hddb will implement additional mechanisms
presented in Section 3.

The hddb compiler instruments hardware designs developed
in Migen (a Python based HDL) with debugging logic that com-
municate with the hddb debugging interface running on the host
machine. hddb has currently been tested on the open-source Or-
angeCrab development board, which is based on the Lattice ECP5
FPGA. The hddb workflow begins with a user design written in the
Migen HDL. The design is then passed through the hddb compiler
which instruments the design with its debugging engine and out-
puts a new instrumented source file along with a hardware symbol
table used by the client debugging interface. This process is analo-
gous to compiling a program with debug symbol support through
a compiler flag. Communication between the host machine and
the OrangeCrab board is administered over USB. As the Orange-
Crab does not support a native USB interface (the USB pins directly
connect to the FPGA), an open-source USB core is instrumented
into the users design by hddb. Both the host and client side of the
command interface are connected to a Wishbone bus. The client
debugging interface on the host machine uses a USB compatible
Wishbone bridge utility to communicate with the hddb debugging
engine via memory mapped registers accessible over the Wishbone
bus. The hddb client running on the host machine provides a text-
based user interface for stepping the design clock and accessing
hardware registers in the user design.

4.1 Debugging Engine Overheads
Figure 2 presents the resource overheads hddb introduces on a con-
figurable dimension vector processing unit (VPU) core developed
in Migen and synthesized by Yosys. The VPU core supports basic
operations between two vectors such as element-wise arithmetic
and the vector dot-product. hddb currently instruments the entire
design; each register in the VPU core is visible and modifiable at
runtime through the debugging interface. As expected, there is a
considerable resource overhead for instrumenting all registers of

Year

S
ys

te
m

 L
og

ic
 C

el
ls

0

1,000,000

2,000,000

3,000,000

4,000,000

2000 2005 2010 2015 2020

Figure 3: Xilinx Virtex family FPGA logic cell capacities since
1999.

the VPU. However, this resource overhead scales linearly in rela-
tion to the baseline designs resource usage as the VPU’s dimension
scales. Additionally, for some designs, partial debugging coverage
may be sufficient and resource overheads for debugging can be
lowered.

Nonetheless, the overheads of in-circuit debugging can be justi-
fied as FPGA logic capacities have been scaling exponentially. Figure
3 presents the logic cell counts of various Xilinx FPGA models of
the past two decades (compiled from archived product data sheets).
It is common for FPGA logic cell counts to now exceed one million,
which can justify the overheads of instrumenting debugging logic
into hardware designs.

5 RELATEDWORKS
A closely related idea is presented in Cascade [5], a just-in-time
compiler for Verilog. Cascade transparently offloads simulation
onto hardware, effectively hiding the long compilation latencies
that plague hardware design. Their design also allows using non-
synthesizable Verilog primitives, such as print statements to be
realized in hardware, which is useful for debugging. A crucial differ-
ence between Cascade and our proposal is that the former improves
the hardware design experience by hiding lengthy compile times,
while we propose an improvement to hardware design visibility,
which is achieved through a debugging framework that can also
hide lengthy compile times to support rapid development in the
edit-compile-debug cycle.

REFERENCES
[1] Sameh Attia and Vaughn Betz. 2020. StateMover: Combining simulation and

hardware execution for efficient FPGA debugging. In Proceedings of the 2020
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. 175–
185. https://doi.org/10.1145/3373087.3375307

[2] Jonathan P Dawson. 2012. synthesizable ieee 754 floating point library in verilog.
https://github.com/dawsonjon/fpu

[3] Jiacheng Ma, Gefei Zuo, Kevin Loughlin, Haoyang Zhang, Andrew Quinn, and
Baris Kasikci. 2022. Debugging in the brave new world of reconfigurable hardware.
In Proceedings of the 27th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems. 946–962. https://doi.org/10.
1145/3503222.3507701

[4] Marco Antonio Merlini, Isamu Poy, and Paul Chow. 2021. Interactive Debugging
at IP Block Interfaces in FPGAs. In The 2021 ACM/SIGDA International Symposium

https://doi.org/10.1145/3373087.3375307
https://github.com/dawsonjon/fpu
https://doi.org/10.1145/3503222.3507701
https://doi.org/10.1145/3503222.3507701

LATTE ’24, April 27-28, 2024, San Diego, California, USA Alborz Jelvani, Richard P. Martin, and Santosh Nagarakatte

on Field-Programmable Gate Arrays. 138–144. https://doi.org/10.1145/3431920.
3439305

[5] Eric Schkufza, Michael Wei, and Christopher J Rossbach. 2019. Just-in-time com-
pilation for Verilog: A new technique for improving the FPGA programming
experience. In Proceedings of the Twenty-Fourth International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems. 271–286.

https://doi.org/10.1145/3297858.3304010
[6] Gefei Zuo, Jiacheng Ma, Andrew Quinn, and Baris Kasikci. 2023. Vidi: Record

Replay for Reconfigurable Hardware. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems, Volume 3. 806–820. https://doi.org/10.1145/3582016.3582040

https://doi.org/10.1145/3431920.3439305
https://doi.org/10.1145/3431920.3439305
https://doi.org/10.1145/3297858.3304010
https://doi.org/10.1145/3582016.3582040

	Abstract
	1 Introduction
	2 Existing Debugging Approaches
	3 Debugging Engine
	3.1 Design Controller
	3.2 Simulator Core
	3.3 Command Interface

	4 Evaluation
	4.1 Debugging Engine Overheads

	5 Related Works
	References

