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1 INTRODUCTION
The Explicit Decoupled Data Orchestration (EDDO) paradigm is
gaining popularity in machine learning accelerators thanks to its
superior efficiency compared to conventional cache-based (Implicit
Coupled) architectures. This paradigm, as illustrated in Figure 1,
decouples data movement from execution, allowing for improved
dataflow control and optimization [1–8, 10]. Notable EDDO
accelerator designs include Eyeriss [1, 2], IBM AIU [11], NVIDIA
SIMBA [10], Morph [5], MAERI [7], and Extensor [6]. These
architectures typically feature distributed scratchpads and
programmable units specialized for memory management, address
generation, computation, networking, etc. Systems employing these
specialized units are proven more efficient compared to those with
generalized homogeneous engines. While early instances of EDDO
systems were fixed-function, recent trends prioritize flexibility,
supporting similar workloads without hardware reconfiguration.

Existing EDDO software compilers are majorly limited, typically
targeting specific EDDO architecture implementations. Broadening
support requires time-consuming modifications, prohibiting design
exploration for different workloads. Our work aims to address this
challenge by: (1) formulating a hardware specification language
capable of accommodating various EDDO designs (2) developing a
software compiler tailored to the abstract hardware specification,
and (3) developing a hardware compiler to implement the provided
specification. To ensure the feasibility of this ambitious project, we
constrain our initial scope in input to (1) affine dense programs
with static workloads and (2) programmer-specified data movement
parallelism/synchronization. Hardware is similarly constrained to
(1) one-dimensional vector engines with simple FMA operations
(primarily HPC/ML-oriented PolyBench kernels) and (2) Load/Store
units with simple data and synchronization operations.
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Figure 1: Explicit Decoupled Data Orchestration Paradigm
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2 FULL-STACK SOLUTION
As depicted in Figure 2, our comprehensive full-stack architecture is
segmented into two principal components: the Software Compiler
and the Hardware Compiler. The Hardware Compiler takes the
high-level hardware design expressed in the hardware specification
language, translating it into programmable hardware and ensuring
that the specified designs are accurately rendered into physical
components. In parallel, the Hardware Intermediate Representation
(IR) is passed to the Software Compiler, which is responsible for
mapping algorithms and code generation onto the generated hard-
ware. Subsequently, a set of decoupled heterogeneous executables
are produced, ready to run on the generated physical components.
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Figure 2: Co-Compilation Process

2.1 Hardware Compiler
EDDO architectures are characterized by a distributed arrangement
of scratchpads, programmable compute engines, programmable
load/store units, and an interconnected network linking these
components. We present a Hardware Specification Language
enabling users to define EDDO designs using a directed graph
methodology, where nodes represent components (e.g. scratchpads,
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compute engines, load/store units) and edges denote data transfer
interconnections. Each node contains component specification
including vector register file size, precision, or supported compute
operations. Previous research by Parashar et al. [8] presented a
polyhedral-based HST abstraction for EDDO designs. However, this
method employs piece-wise affine expressions when dealing with
interconnection networks that cannot be adequately represented
using regular affine expressions, resulting in increased complexities.

The hardware compiler empowers users to tailor the data path
according to the spatial structure theywish to investigate. It achieves
this by sharing the abstract EDDO design with the compiler via
translation of the provided user specification to a Hardware IR.
This IR incorporates spatial information, including EDDO layout
(for correctness) and cost models (for optimization). The IR is then
transformed into High-Level Synthesis (HLS) code. Ultimately, the
HLS toolchain generates the implementation hardware.

2.2 Software Compiler
The software compiler will leverage the Hardware IR constructed by
the hardware compiler to produce decoupled per-unit executables
including data movement, computation, and synchronization
instructions. Summarized in Figure 2, the software compiler will:

(1) Leverage parallelism in the source program – we currently
target only programs with affine loopness (via C + OpenMP)
– to generate code for a multi-core decupled architecture

(2) Apply distribution and vectorization to the source program
according to the capabilities and layout of the SIMD units

(3) Separate each per-core program into per-unit programs by
expanding and identifying load, store, and SIMD instructions
while inserting required synchronization instructions

(4) Optimize speed and synchronization overhead according to
the connection cost model supplied within the Hardware IR

(5) Assemble according to the HW compiler’s generated ISA
Through this approach, source programs may be flexibly mapped
to user-defined hardware without the need to consider the target
EDDO architecture from the perspective of the source program.
Pending data on optimal hardware/application matching, future
work may include the software compiler advising the hardware
compiler of generalized EDDO topology families it believes to be
optimal based on input program characteristics.

3 HARDWARE IMPLEMENTATION
Data transfer between units is implemented with FIFOs, which
conveniently also manage the bulk of unit-level synchronization
while also simplifying inter-unit connections and control. More
detailed explanations of each unit, as explified in Figure 3, include:

• Single Instruction Multiple Data Unit (SIMD): In-order
execution without branch prediction, prefetching, or caching.

• Load/Store Unit (LU/SU): Fine-grained memory accessors
with synchronization instructions generated during static
analysis routed through arbiters.

• Load/Store Arbiter: Effective memory synchronization is
provided with straightforward control logic and a low
synchronization connection overhead of only 2𝑁 (where 𝑁
is the number of scratchpads) [9], facilitating multithreaded
operations for user-defined design space exploration.
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Figure 3: Example of Generated Hardware Implementation

4 MEMORY SYNCHRONIZATION
Although forward synchronization is implicitly handled via FIFO
connections, anti- and output-dependencies on scratchpads require
explicit synchronization signals. These signals are implemented as
"lock" and "unlock" instructions, inserted during static analysis.

To reduce synchronization connection overhead, we implement
synchronization logic at arbiters – the local convergence points
between load/store units. Our proposed scheme decreases the
synchronization interconnection complexity by a factor of 𝐿𝑈𝑠 ×
𝑆𝑈𝑠 [9] over a naive N-N scheme.We plan to extend this approach to
the entire memory hierarchy (e.g. between scratchpads and DRAM).

5 INITIAL RESULTS AND FURTHERWORK
EDDO architectures can achieve better performance and energy
efficiency at the cost of program/compiler complexity. We present
SHADE, a full-stack solution that mitigates this complexity increase,
enabling efficient design space exploration of EDDO architectures.
Our key contributions include open-source tools targeted towards
user exploration, insights for optimal hardware and application
matching, and EDDO-friendly memory management techniques.

Future work will include improving SHADE’s ISA-based SIMD
implementation, driven by unbalanced FPGA resource allocation
shown in Figure 4’s preliminary results. Therefore, we intend to
introduce SIMD unit variants specialized for specific workloads.
Leveraging the maturity this will bring to our flexible ISA scheme,
we will also explore low design-overhead methods of supporting
user-defined custom engines (e.g. Vision Transformer or Dynamic
GNN). In the software compiler, we will investigate alternative
methods of dependency expression; while C + OpenMP excels
in dense applications, it falls short in sparse applications. Finally,
dynamic control flow is an intriguing challenge we want to address.
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