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ABSTRACT
Creating efficient memory subsystems has always been critical for
hardware accelerators. While prior works enable flexible memory
generation, the task of mapping streaming applications to the hard-
ware is often left to the user. In this paper, we argue that hardware
generators must move to generating not only hardware but also
the software collateral for mapping to that hardware in order to
enable rapid design-space explorations. We demonstrate this with
Lake, our open-source memory generation system for streaming
accelerators, which uses a high-level streaming memory abstrac-
tion to cleanly define the hardware/software interface. To demon-
strate the viability of this approach, we have used Lake to gener-
ate and automatically map to the memory in multiple fabricated
coarse-grained reconfigurable arrays. Lake is publicly available at
https://github.com/StanfordAHA/lake/.

1 INTRODUCTION
Streaming hardware accelerators [4, 9, 12] generally support a com-
putational model where data is prefetched and then streamed to
the functional units in order to maximize the utilization of their
large, parallel compute hardware. The streaming applications accel-
erated by this hardware feature control patterns where the memory
accesses can be separated from the compute graph. Accelerator
implementations exploit this fact by building machines that imple-
ment explicit, decoupled data orchestration [10] where memory
access patterns are known a priori and can be produced by explicit
address generators. This paradigm allows many independent ad-
dress generator units to work in tandem to keep large numbers of
functional units busy. To help find the optimal hardware accelerator
for a set of applications, flexible hardware generators are often used
to perform rapid design space explorations (DSEs). However, most
of these generators only generate RTL and do not provide the nec-
essary software collateral to enable automatic compiler mapping.
This approach limits the efficiency of a DSE as there is still manual
intervention required to map applications to each design point.

User applications contain graphs of streaming memories that
feed data to and process data from compute subgraphs. To enable
automatic mapping from these graphs to hardware implementa-
tions, the hardware generator and compiler must target a common
abstraction. One such abstraction for streaming memories is called
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Figure 1: Showing the system-level flow of using Lake to
design a compiler-compatible streamingmemory accelerator.

the Unified Buffer (UB) [6], which is described in more detail in Sec-
tion 2. This paper introduces the Lake system, which is built around
the UB abstraction in order to enable handling automatic hardware
generation and mapping for the memory portion of the application
graph. Lake is one project within an ecosystem of tools that seek
to enable agile hardware design methodologies [5]. The two other
tools in this ecosystem, namely PEak [2] and Canal [7], employ
different domain-specific languages (DSLs) that target certain ab-
stractions to support building and compiling to processing elements
and interconnects, respectively.

As shown in Figure 1, Lake is a hardware generator system that
generates all necessary collateral for automatically building and
testing streaming memories from a single input specification. In
addition to generating physical UB hardware ("RTL" in Figure 1)
that implements the UB abstraction, Lake is designed to extract the
resource constraints of this hardware and provide them to the com-
piler ("Compiler Collateral" in Figure 1). With this information, the
compiler can generate efficient and implementable schedules for
the desired application on the hardware target. In our use case for
streaming memories, the original application is written in the image
processing DSL Halide [11], although the system is not inherently
limited to any specific application language. Then, Clockwork [3],
a polyhedral application compiler, analyzes the loop nests of the
original application and automatically integrates the "Compiler
Collateral" when building the set of constraints that are used by
its solver to create a valid schedule for the hardware. Since the
hardware implementation is controlled by the user, Lake also cre-
ates the mapping routines ("Configuration Routines" in Figure 1)
needed to convert these high-level schedules into the low-level
operations needed to program the configuration registers in the
generated RTL. In the rest of this paper, we briefly describe the
Unified Buffer and then describe Lake and show how its connection
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brighten(x, y) = input(x, y) * 4;
blur(x, y) = (brighten(x, y) +
              brighten(x, y+1)) / 2;
blur.tile(x, y, xo, yo, xi, yi, 64, 63)
    .hw_accelerate(xi, xo);
brighten.store_at(blur, xo)
        .compute_at(blur, xo);
input.stream_to_accelerator();

for(y, 0, 64)
  for(x, 0, 64)
    brighten(x, y) = input(x, y) * 4;

for(y, 0, 63)
  for(x, 0, 64)
    blur(x, y) = (brighten(x, y) +
                  brighten(x, y+1)) / 2;
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Figure 2: The flow of how an application is written and
mapped down to hardware generated by Lake. The compiler
extracts and analyses loop nests in the original Halide appli-
cation and then produces Unified Buffers to implement the
streaming memories.

to the UB abstraction makes automatic mapping a feasible option
for hardware generators.

2 UNIFIED BUFFER AND COMPILATION
The Unified Buffer is an abstraction for streaming memories that
describes operations on streams in both space and time [6]. The
UB fundamentally describes streams emitted from a memory as
reorderings of streams ingested by the memory. These reorderings
are defined over the IterationDomain of the original loop nests by
a multidimensional set of counters of size dim, which are the itera-
tion indices of the loop nest. In addition to the specific reordering
of a stream, the UB guarantees data dependencies are maintained
by providing specific scheduling information for each buffer access.

For every statement that accesses a specific buffer in the original
application, the UB will create a Port into a memory representing
that buffer and bind to it both an access map, which describes
the reordering as a sequence of addresses, and a schedule, which
enforces data dependencies explicitly through a sequence of event
timestamps. Each point in this schedule corresponds to a read or
write at the associated address in the access map. These sequences
are described as affine maps, using a small set of parameters: extents,
a vector of size 𝑑𝑖𝑚 to describe the bounds of the iteration indices;
strides, a vector of size 𝑑𝑖𝑚 to describe the relation between each
iteration index and the sequence value; and a scalar offset.

An example of a UB extracted from a brighten followed by a
blur kernel written in Halide is shown in Figure 2. First, the loop
nests are extracted from the original application and shown in
the "Loop Nest" box. These loop nests can be analyzed by Clock-
work [3] after which final address and schedule maps are emitted.
An example of these maps from the original IterationDomain is
shown in Figure 3. Since the brighten buffer is accessed by two
different statements in the following blur kernel, the UB describing
the brighten buffer has two output Ports. Note that the cycle offset

brighten

brighten

brighten

Unified Buffer Abstraction

64 cycles

0 cycles

Iteration Domain

Schedule
Access Map

Figure 3: Expanded view of the UB built for the brighten
buffer in Figure 2. For each UB Port, a stream is described
with an Iteration Domain, Access Map, and a Schedule.

for each output Port is 64 since it takes 64 cycles to produce the en-
tire first stencil window (of size 2x1). In addition to emitting naive
UBs, Clockwork is capable of exploiting the locality of this sliding
window and is able to implement additional ports as time-shifted
versions of neighboring ports.

3 SYSTEM OVERVIEW
We define the set of modules used in Lake specifications to directly
implement the addressing and scheduling represented by the UB
abstraction. Since these modules match the UB abstraction, Lake
can both extract the critical resource constraints of these objects to
communicate them to the compiler and can provide the mapping
routines to create a bitstream for the hardware’s configuration
registers from the compiler output.

Each Lake design is generated from a specification that describes
the topology and resource constraints of the desired memory sys-
tem. A Lake specification is composed of a set of extensible core
components: Storage, MemoryPort, Port, IterationDomain,
AddressGenerator, and ScheduleGenerator. The Storage and
MemoryPort components are used to describe parameters of the
physical storage device (e.g., SRAM vs. register file, single-port
vs. dual-port). The Port component corresponds directly to the
Ports that the UB abstraction binds streams to. The IterationDo-
main, AddressGenerator, and ScheduleGenerator components
are used to provide a Port with hardware to implement the data
streams that the UB will bind to it (both addressing and scheduling).

We note that Lake supports both statically-scheduled and latency-
insensitive (ready/valid) design styles; the user chooses which ex-
ecution paradigm to use in the input specification. In statically-
scheduled designs, the read and write timestamps generated by
the compiler are used to program the scheduling control units,
while in latency-insensitive designs, coarse scheduling features are
extracted during the Clockwork compiler’s analysis.

Figure 4 shows an example specification for a coarse-grained
reconfigurable array (CGRA) memory tile from one of our chips
called Amber [1]. Lake specifications are written in a Python li-
brary where components are connected together with a simple
API, but the resulting specification is more easily visualized as a
block diagram. We used a wide, single-MemoryPort SRAM in the
Amber memory tile to emulate the bandwidth of a multi-ported
memory [5] while getting the higher energy efficiency associated
with wider memory busses [8]. In this example, the user specifies
that the memory tile will have two input and two output Ports
with a narrow (16-bit) interface to external components and a wide
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Figure 4: The Lake specification for a memory tile in the Am-
ber CGRA [1]. This design has two input Ports and two output
Ports and uses a vectorization factor of 4. AG = AddressGener-
ator, SG = ScheduleGenerator, ID = IterationDomain, vec_cap
denotes vectorization buffer capacity.

(64-bit) interface to the internal module. For each Port, an amount
of vectorization buffering is specified in its instantiation as well
to capture width conversion and potential reuse. For example, for
input ports in Amber, we need to pack four 16-bit words to match
the 64-bit SRAM interface.

As a hardware generator, Lake generates the RTL that can be
used in standard VLSI flows. Lake first stamps out individual com-
ponents specified by the user and then may infer small vectorization
buffers and related control logic to enable data width conversion
within a Port. In cases where the topology implies resource sharing,
Lake infers multiplexers and builds the corresponding arbitration
logic for the select lines to those multiplexers. Lake then builds
hardware for Storage components and their associated Memory-
Ports by either generating custom RTL or picking from a set of
provided SRAM macros as dictated by the user. We note that the
Lake system is agnostic to circuit-level tricks like double clocking
a single-port SRAM to emulate a dual-port memory: this would be
simply described as a Storage with twoMemoryPorts in the spec-
ification, and the implementation would be handled as a custom
generation routine.

We provide optimizations built into Lake to generate efficient
hardware for the IterationDomain,AddressGenerator, and Sched-
uleGenerator components [5], but the user can also substitute al-
ternative implementations and iterate on the hardware generated in
a modular fashion. We chose to build Lake on top of a Python-based
RTL generation language [13] so that we can create objects for each
Lake component using the inheritance of abstract base classes. In
this way, Lake enforces that users adhere to designing memory
systems composed of parameterized components that match the
UB abstraction, which in turn enables Lake to extract information
about the capabilities of the generated memories for the compiler.

The collateral that Lake extracts from the design and passes to
the compiler is limited to information that impacts the data streams
that the hardware can support (e.g., size of Storage components,
number and characteristics of Ports, dimensionality of the sequenc-
ing controllers, and vectorization). In Amber (Figure 4), the main
Storage is a single-MemoryPort SRAMwith a capacity of 2KB and
a 1-cycle read and write. There are two input Ports and two output
Ports with 6-dimensional sequencing controllers that all timeshare
the singleMemoryPort. All Ports have a vectorization factor of
4 with 16B of buffering, which has 1-cycle write and 0-cycle read
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Figure 5: The process of Lake communicating with the com-
piler for the read Port from the brighten kernel in Figure 3,
with a statically-scheduled implementation. Lake passes UB-
relevant information up to the compiler that then integrates
the constraints when using an Integer Linear Programming
(ILP) solver to create an implementable schedule. The result-
ing schedule is then distributed to the relevant components’
configuration routines. AG = AddressGenerator, SG = Sched-
uleGenerator, ID = IterationDomain.

delays. An example of this information being integrated into the
compiler’s scheduling system is shown in Figure 5 for a single read
Port from the brighten buffer in Figure 2.

Finally, after the compiler generates implementable schedules for
the hardware design, Lake can automatically map that scheduling
information down to the configuration registers ("Configuration
Routine" in Figure 1). For each Unified Buffer Port in the original
application, the compiler generates an address and a schedule pat-
tern as shown in Figure 5. The compiler then distributes the strides
and offset for each Port to its associated AddressGenerator (and
ScheduleGenerator in the case of a statically-scheduled design).
The IterationDomain is configured with the extents from these
patterns. Depending on the implementation and timing style, dif-
ferent information may be used from each sequence bundle, and in
some cases, the hardware optimizations require a transformation
on the configuration bits generated by the compiler before the hard-
ware can be programmed. Lake requires the user to specify these
transformation functions along with component implementations
so that the hardware can continue to be configured automatically.

4 CONCLUSION
We argue that designers should build hardware generators that
provide enough information to map to their output designs. To
show the feasibility of this approach, we present our streaming
memory accelerator generator system, Lake. By using the high-
level Unified Buffer abstraction, Lake can produce both hardware
and the associated compiler collateral, which enables rapid DSE
and automatic configuration of the resulting memory hardware.
While adhering to this abstract model limits the design space of the
memory systems that can be generated, all hardware generators
are limited by the design parameters that their generators support.
The Lake system simply takes advantage of these restrictions to
guarantee automatic application mapping for all hardware designs.
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