
Latency Counting in the SUS Language
Lennart Van Hirtum

PC2 at Universität Paderborn
Germany

Christian Plessl
PC2 at Universität Paderborn

Germany

ABSTRACT
This paper argues for the pipelining method employed in the SUS
Language called Latency Counting. It compares it against the alter-
natives, and explains the considerations that underpin its design.

1 COMPARISON OF PIPELINING STYLES
Pipelining is a contentious topic in hardware design. Many tools
have their own opinion on how (and if) it should be done. Lan-
guages range from providing no easy method of pipelining, thereby
requiring the programmer to instantiate every register themselves,
through providing ’pipeline’ abstractions with explicit stages, to
completely taking pipelining out of the programmer’s hands.

The view that pipelining should be fully left up to the compiler is
an attractive one. After all, the compiler knows (at least in theory)
how it lays out the hardware on the chip, and therefore knows
where the biggest bottlenecks are. Especially in the face of the
shifting bottleneck towards wire instead of gate delays. In this
philosophy pipelining is a low-level implementation detail that
the programmer should no longer worry about, much like how
register allocation for software design is completely invisible to
programmers today.

However, adding or removing latency registers does impact the
many trade-offs a hardware designer has to make. For this reason
the programmer should still retain control over the pipelining pro-
cess themselves. They may want to add fewer pipeline registers in
certain areas of the design, trading a more difficult Place & Route
for fewer resource use. In another location, they may add many
extra, as this location is latency insensitive and should leave P&R
flexibility for other parts of the design.

Ideally the language should be structured in a way that adding or
removing pipelining has a minimal impact on the codebase. A pop-
ular approach to pipelining is introducing explicit pipeline stages.
Languages such as TL-Verilog[2] and Spade[5] take this approach.
However, we disagree with this approach. While adding or remov-
ing pipeline stages this way is rather easy, it comes at the cost
of requiring the programmer to structure their code around the
pipeline stage structure. With explicit pipeline stages, the program-
mer has to group all hardware that happens to fall within the same
pipeline stage together, even though these functionally indepen-
dent branches of a pipeline might have nothing to do with each
other. Of course, this is partly ameliorated by factoring out the
pipeline branches into their own modules or entities, but this then
in turn reveals another issue. If you want to use a function-call-like

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
LATTE ’24, April 28, 2024, San Diego, CA, USA
© 2024 Copyright held by the owner/author(s).

syntax for using a sub-pipeline, then contrary to the way the code
is written lexically, outputs don’t actually become available until a
number of pipeline stages later. Furthermore, allowing data from
different pipeline stages to interact is usually a hassle, requiring
the programmer to explicitly break out of the pipeline system. A
final issue is that this model requires all imputs to be received at
the same time, and all outputs are produced at the same time. This
may cause opportunities for more closely interlocking submodules
across pipeline stages to be lost.

SUS tackles this in a different way. Instead of focussing on
’pipeline stages’ as one might want to do for CPU design, it fo-
cusses on supporting dataflow designs. SUS allows the programmer
to add latency at arbitrary points in the hardware design, which
automatically get compensated for by adding extra latency in the
other branches of the pipeline as well.

Semantically, SUS divides the registers the programmer can use
into state and latency registers. An example of this is shown in List-
ing 1. State registers are used to transfer data across cycles, thereby
playing an integral part in the logic. Latency registers are used
purely for meeting timing, and do not affect the design’s logical
function. This division closely matches the programmer’s intuition
about register use. In practice Latency Counting works by inferring
an absolute latency (relative to some arbitrary origin) for every sig-
nal in the design, and using the differences between these absolute
latencies to derive how many registers should be placed between
signals. This approach is somewhat similar to Filament’s[3], though
in that work no distinction is made between state and latency regis-
ters to enable proving the safety of more complicated constructs. As
a consequence, this causes significant syntactical overhead which
SUS seeks to avoid. The language DFiant[4] also approaches the
problem in this way.

SUS has a few goals with its Latency Counting system:
• Adding a latency register somewhere should be as simple as
adding a single reg keyword before an assignment.

• The exact implementation of a module, including positions of
latency registers should only depend on the module’s code.

• Absolute latencies should be inferred as much as possible.
They should be an afterthought that only comes to the fore-
front when relevant.

• Latency registers cannot be inserted where their presence
would impact the functioning of the design.

1 module blur: int a -> int result {

2 state int prev

3 // Add some pipeline stages to the output

4 reg reg reg result = (prev + a) / 2

5 prev = a

6 }

Listing 1: Example SUS code using both a state register prev to
carry over data across clock cycles, as well as several pipeline
registers on the result.

LATTE ’24, April 28, 2024, San Diego, CA, USA Lennart Van Hirtum and Christian Plessl

2 CONSTRAINING THE PROBLEM
To be able to make the latency counting system deterministic, re-
gardless of at which node the algorithm starts, we must constrain
the solution space until only a single solution is left.

The fundamental constraint we start from is the user provided
delta latencies. When the user specifies a reg keyword on a state-
ment (say reg x = a), it tells the compiler that there must be at least
a difference of 1 between the latency of a and x. Mathematically:
|𝑥 | − |𝑎 | ≥ 1. with |𝑥 | the absolute latency of wire 𝑥 .

This first constraint alone still leaves an infinite space for adding
arbitrarily many registers into the design, so we need an upper
bound as well. A vague upper bound that does this is "inputs should
be accepted as late as possible, and outputs should be produced as
early as possible". This gets us most of the way there, but suffers
from indeterminable cases where an input and output push against
each other as explained in philosophy/latency.md[1].

To that end, we devised a more rigorous definition for the above
constraint: "The latency between any input i and output o that have
a dependency isminimal". In case this is not possible, the user must
specify the affected port explicitly.

This constraint firmly defines absolute latencies for all inputs and
outputs, but there is still some freedom left for the internal wires,
as can be seen in Listing 2. We leave inference of these latencies up
to the implementation, though in general the implementation will
place them as early as possible, as this corresponds to programmers’
intuition.

1 module blur : int a -> int r {

2 reg int t = a * a

3 // Can be either at latency 0 or 1

4 int t2 = a + a

5 r = t + t2

6 }

Listing 2: Code with degree of freedom

2.1 Implementation
To start latency counting, first a directed graph is created from the
code, where wires and temporaries become nodes, and the depen-
dencies between them connections. The connections get weighted
based on the number of regs in this assignment. Any submodules
used also create connections between their inputs and outputs,
based on the latencies inferred for the submodule. Perhaps coun-
terintuitively, state registers introduce no latency. The value of
all nodes are their absolute latencies, which are initially unset.

The core subroutine of latency counting is a depth-first forward
counting traversal through this graph. It starts from a given start
node, which is assigned a given absolute latency, and for each
connected child, it adds the edge latency to the current node value.
If the existing latency in the target node is lower than the new
value, it gets assigned the new value and is recursed over. If the
traversal bumps into a node already in its path, it checks that the
new value is less than or equal to the existing value. If not it returns
an error that a net-positive latency cycle has been found. If it returns
successfully, then all nodes touched by this algorithm are at minimal
delta latency to the starting node.

The actual algorithm then uses this subroutine. It starts from an
arbitrary input or output port, seeds it with an arbitrary value 0, and
alternatingly runs the depth-first traversal backwards and forwards

to discover the absolute latency of other ports. Importantly, the
absolute latencies across the whole graph are cleared after every
exploration, this ensures that if two explorations disagree over the
absolute latency of a port, we can detect it, and return an error
requesting the user to explicitly specify the port latency explicitly.

After port discovery finishes, a single forward pass is made
starting from all input nodes to find all internal absolute latencies.

Of course, not every wire is dependent on the inputs, for example
constants or counters. After this, we can do another backwards
pass, pinning every latency we’ve found thus far, and then forcing
the new signals to be as late as possible.

This approach breaks down a little when trying to build uncon-
ventional hardware, where the inputs and outputs are disjoint, or
where some nodes can’t be reached even after this forward and
backwards pass. Further work should be done to allow for latency
inference in these more complicated cases, though keeping every-
thing deterministic remains difficult.

The user may decide to explicitly specify some of the absolute
latencies in the design. Theoretically, we could use the exact same
algorithm, but we first modify the graph by adding an edge in
each direction between every pair of specified nodes a and b, of
delta |𝑏 | − |𝑎 | and −(|𝑏 | − |𝑎 |) respectively. This in effect pins the
relative offsets between these nodes together. In practice though,
we explicitly take the specified latencies into account for better
error reporting.

2.2 Breaking out
With the latency counting system it is easy to create pipelines, but
sometimes we need to break out of this mode of thinking. If, for
example, we wish to make the read side of a FIFO, how can we
make ready dependent on data_valid if the latter is later by say,
7 cycles? The SUS Language provides two escape hatches: Latency
Offsets and Latency Cuts.

Latency Offsets allows us to add or remove a fixed amount of
latency along a connection, without actually adding the correspond-
ing registers. It is provided in the standard library as
rebase_latency<gen int DELTA, T> : T i’0, T o’DELTA.

Latency Cuts occur at interface boundaries in a multi-interface
module. Each interface in a SUS module has its own latency- (and
possibly clock-) domain. Signals carried from one interface to an-
other (through the cross statement) discard all latency information.
Where these crossings occur, the programmer must pay extra atten-
tion to ensure correctness, much like with clock domain crossings.

1 module memory_block <gen int DEPTH , T> {

2 interface write : T data , int addr , bool wr {

3 T[DEPTH] memory

4
5 if wr {

6 memory[addr] = data

7 }

8 }

9 interface read : int addr -> T data {

10 cross memory

11
12 data = memory[addr]

13 }

14 }

Listing 3: Example with two interfaces

https://github.com/pc2/sus-compiler/blob/master/philosophy/latency.md

Latency Counting in the SUS Language LATTE ’24, April 28, 2024, San Diego, CA, USA

REFERENCES
[1] Lennart Van Hirtum. 2023-. SUS Compiler Github Repository. https://github.

com/pc2/sus-compiler
[2] Steven Hoover and Ahmed Salman. 2018. Top-Down Transaction-Level Design

with TL-Verilog. arXiv:1811.01780 [cs.AR]

[3] Rachit Nigam, Pedro Henrique Azevedo de Amorim, and Adrian Sampson. 2023.
Modular Hardware Design with Timeline Types. Proc. ACM Program. Lang. 7,
PLDI, Article 120 (jun 2023), 25 pages. https://doi.org/10.1145/3591234

[4] Oron Port and Yoav Etsion. 2021. Registerless Hardware Description. https:
//capra.cs.cornell.edu/latte21/paper/4.pdf

[5] Frans Skarman and Oscar Gustafsson. 2022. Spade: An HDL Inspired by Modern
Software Languages. https://spade-lang.org/fpl2022.pdf

https://github.com/pc2/sus-compiler
https://github.com/pc2/sus-compiler
https://arxiv.org/abs/1811.01780
https://doi.org/10.1145/3591234
https://capra.cs.cornell.edu/latte21/paper/4.pdf
https://capra.cs.cornell.edu/latte21/paper/4.pdf
https://spade-lang.org/fpl2022.pdf

	Abstract
	1 Comparison of pipelining styles
	2 Constraining the problem
	2.1 Implementation
	2.2 Breaking out

	References

