ROHD-HCL: Configurable, Reusable Hardware Components

Max Korbel
Intel Corporation
Santa Clara, California, USA

ABSTRACT
The ROHD Hardware Component Library (ROHD-HCL) is a free

and open-source library of high-quality, configurable, well-documented

design and verification components developed using the Rapid
Open Hardware Development (ROHD) framework. The library aims
to address the challenges of hardware reuse across the industry
and provide examples and a foundation for hardware developers to
build upon. The library also includes a configuration methodology
and web-app to make components even to easier to use.

1 INTRODUCTION

One major difficulty in hardware design is the limited reuse of
components. Existing open-source libraries (e.g. BaseJump STL
[5]) often suffer from the typical challenges of industry-standard
SystemVerilog methodologies. Others comprise mostly utilities or
language extensions without full tests, documentation, nor illustrate
how to add more reusable and composable components [1][2].

The hardware world needs high-quality, configurable, reusable,
pre-validated, nicely-packaged, well-documented components that
can be seamlessly dropped into designs. The ROHD Hardware Com-
ponent Library (ROHD-HCL) provides this by leveraging the ROHD
framework, a Dart-based hardware generator framework that en-
ables modern hardware design and verification [3]. This separate
library uniquely comprises a collection of reusable, configurable,
composable, unit tested components for both design and verifica-
tion that can be utilized in diverse designs, and also serves as a
source of practical examples of ROHD hardware implementations.
ROHD-HCL is offered as free and open-source software with a
permissive license at https://github.com/intel/rohd-hcl. The library
also includes a methodology for component configuration and a
web-app which leverages it.

The library has over 70 components in categories such as:

e Encoders & Decoders e Arithmetic

o Arbiters e Error handling

e FIFOs & Queues e Data flow

e Find, Count, & Detect e Memory

e Sort e Standard interfaces
e Rotate e Models

2 HARDWARE COMPONENTS

Design component development in ROHD-HCL is guided by sev-
eral principles. Components should be general, easily reusable, and

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

LATTE °24, April 28, 2024, San Diego, CA, USA

© 2024 Copyright held by the owner/author(s).

Desmond Kirkpatrick
Intel Corporation
Hillsboro, Oregon, USA

Yao Jing Quek
Intel Corporation
Penang, Malaysia

as configurable as may be useful. They must be extensively tested
and come with excellent documentation and examples. The first
component in a category should be the simplest, and the focus
should be on the breadth of component types before depth. Compo-
nents should focus on correctness first, then optimization, which
ensures that functionality is not compromised in the pursuit of
performance. This approach is facilitated by having tests in place
to protect functionality.

Because the library is built with ROHD, it is possible to use
object-oriented programming (OOP) approaches to help make com-
ponents consistent, succinct, and interchangeable. Error checking
components in the library offer a good example. An abstract defini-
tion for error checking transmitters and receivers defines the API
requirements and provides automation which can be reused for any
implementation (ports, configuration, etc.). Implementations such
as Hamming ECC and Parity offer different capabilities for error
checking and correction with trade-offs on transmission size and
hardware cost. A user of the library could specify that some com-
munication between devices requires error checking in a generic
way, and leave the implementation flexible. Thus, the same hard-
ware design could flexibly support either parity checks, ECC, or
any other error checking implementation which is compliant with
the abstract API requirements. Some types of arbiters, encoders,
and decoders have a similar structure.

Parallel prefix or "scan" trees are useful for efficient implemen-
tation of computations which involve associative operators such
as encoding, or-reduction, and addition. By leveraging advanced
programming idioms, like functors, allowing for passing of func-
tions which generate prefix trees into an adder generator, a wide
variety of adders are supported by the library. For example, tree
patterns defined by ripple, Sklanksy, Kogge-Stone, and Brent-Kung
are included which gives those four varieties of adders, but also the
same four varieties of or-reduction and priority encoding.

A powerful feature of component libraries is composability, and
ROHD-HCL expands upon wire-level connections from ROHD by
including handshaking automation (e.g. via a ready-valid protocol)
in a composable type-safe manner compatible with linear dataflow
as well as fan-in and fan-out arbitration on a subset of components.

3 STANDARDIZED INTERFACES

Today’s standardized interfaces are usually just specification doc-
uments. Implementations vary in naming and compatibility and
often require additional mapping for interconnections. Further-
more, using advanced features of SystemVerilog, such as interfaces,
modports, structs, unpacked arrays, etc., may not be supported by
tools handling the connectivity. ROHD offers a solution to these
challenges by supporting Interface abstractions which are simple to
connect, can contain configuration information, automate uniquifi-
cation, support hierarchical definitions, and convert to generated
SystemVerilog that is simple, lint-clean, and easy for tools to read.

https://github.com/intel/rohd-hcl

LATTE ’24, April 28, 2024, San Diego, CA, USA

The ROHD-HCL library takes this a step further by providing
centralized, spec-compliant implementations of standardized in-
terfaces. These implementations support configurations from the
specification and include automation and features from ROHD in-
terfaces. ROHD-HCL also includes simulation-time interface com-
pliance checkers, further enhancing the reliability of the interfaces.

4 VERIFICATION COMPONENTS

While much of the focus of hardware development often lies in the
design of components, the importance of verification components
cannot be overstated for ensuring functionality and reliability.

Although the components in the library are already tested, check-
ers for components in the library provide an additional layer of
assurance by ensuring proper usage of the components. For ex-
ample, a FIFO checker, easily attached to any instance, detects
underflow or overflow scenarios which could indicate errors in the
surrounding design.

Trackers are another essential verification component for log-
ging transactions across interfaces. However, developing trackers
can be a time-consuming process and is often overlooked in all
but the most crucial interfaces. ROHD-HCL includes monitors and
trackers for standard interfaces and some components.

Bus Functional Models (BFM) are another crucial verification
component. They are indispensable for testing hardware devices,
providing a high-level abstraction of a device’s behavior and a well-
defined API for driving stimulus. ROHD-HCL includes models for
standard interfaces and common use cases which are typically only
available from vendors and only compatible with costly tools.

Configuration information can be collected from ROHD Interface
objects, so configuration alignment between verification and design
components becomes automatic. Additionally, just like the design
components, these verification components are high quality, heavily
tested, and well-documented.

5 CONFIGURATION

Hardware components in ROHD-HCL each come with a Configu-
rator, an object with a standard software API for enabling common
interactions with components. A Configurator implementation is
responsible for defining a set of configurable “knobs” which control
generation of a ROHD module instance.

In exchange for these implementations, the base Configurator
class adds functionality to generate SystemVerilog as well as save
or load configuration in JSON format. A Configurator enables ap-
plications to generically support interactions with components.
For example, Configurators are used for the ROHD-HCL web-app
shown in Figure 1. A component registry, which enumerates all
the ROHD-HCL Configurators, is queried to generate a list of com-
ponents that can be generated within the web-app. The web-app
enables even non-ROHD developers to easily configure and ob-
tain SystemVerilog component implementations. The web-app and
Configurator classes have stand-alone definitions, enabling appli-
cations whereby non-library components could be configured and
generated as well.

Configurators and the registry are also used to generate Sys-
temVerilog for the purpose of generating synthesized schematic
web pages (leveraging Yosys [6] and d3-hwschematic [4]), which

Max Korbel, Desmond Kirkpatrick, and Yao Jing Quek

ROHD-HCL
Generated Outputs
@ Rotate FIFO Generate dRTL JSON Configuration

@ fro .

@ Ecc

@ Round Robin Arbiter

Generate Error

Generate Bypass [m]
@ Ripple Carry Adder

Generate Occupancy [m]

ve Multiplier

Generate RTL

Figure 1: The ROHD-HCL Configuration Web-App for con-
figuring and generating components interactively.

are automatically built and hosted as part of the continuous deploy-
ment (CD) flow on GitHub.

6 FUTURE WORK & CONCLUSION

Expansion of the library is a primary area of focus. This includes in-
creasing the number of components for both design and verification,
as well as diversifying the types and categories of components. Per-
formance optimization for area, power, performance, clock speed,
and other factors as well as improvements in flexibility and con-
figurability are other areas of future work. Existing unit tests will
ensure that improvements do not compromise functionality.
Interactive component development and inspection is another
area of future work, building upon the web-app. Flutter offers a low-
effort way to launch the app while developing components, giving
developers and contributors a way to "see" their component as
they work on it (e.g. dynamic hierarchy, schematic, and simulation
waveform generation). Other in-progress development for debug
tooling and waveform viewing in ROHD will also aid in these areas.
Finally, improving documentation is a continuous process and
crucial for easy usage and increased adoption. The goal is to make
the ROHD-HCL library as user-friendly and accessible as possible.
Attracting both increased usage and contributions is crucial for
the accelerated growth of the library. More users will inevitably
improve the quality and breadth of the library, attract more contri-
butions, and build trust in the library in a positive feedback loop.
ROHD-HCL has established a solid framework for building fam-
ilies of reusable, and validated, configurable components using the
strong capabilities of the Dart language and ROHD. The main met-
ric of success for ROHD-HCL is successful usage of the library
for real designs. Within Intel, multiple real projects are leveraging
ROHD-HCL. ROHD-HCL is hosted on the public pub.dev Dart pack-
age manager, where it is in the top two-thirds of all Dart and Flutter
packages downloaded worldwide. Informal announcement posts
for ROHD-HCL on social media have garnered tens of thousands of
impressions, hundreds of reactions, and dozens of comments and
reposts.
ROHD-HCL is a step towards a world where anyone can freely
leverage high-quality components for their hardware development
and focus on adding new value.

pub.dev

ROHD-HCL: Configurable, Reusable Hardware Components LATTE 24, April 28, 2024, San Diego, CA, USA

REFERENCES [4] Nic30. [n.d.]. https://github.com/Nic30/d3-hwschematic

[1] [nd]. Amaranth. https://github.com/amaranth-lang/amaranth [5] Michael Bedford Taylor. 2018. Basejump STL: Systemverilog needs a standard
[2] [n.d.]. SpinalHDL. https://github.com/Spinal HDL/SpinalHDL template library for hardware design. In Proceedings of the 55th Annual Design
[3] Max Korbel. 2022. Rapid open hardware development framework. In Proc. Work- Automation Conference. 1-6.

shop Open-Source EDA Technol. [6] Claire Wolf. [n.d.]. Yosys Open SYnthesis Suite. https://yosyshq.net/yosys/.

https://github.com/amaranth-lang/amaranth
https://github.com/SpinalHDL/SpinalHDL
https://github.com/Nic30/d3-hwschematic
https://yosyshq.net/yosys/

	Abstract
	1 Introduction
	2 Hardware Components
	3 Standardized Interfaces
	4 Verification Components
	5 Configuration
	6 Future Work & Conclusion
	References

