The ESI System Construction Compiler in 2024

John Demme (john.demme@microsoft.com), Microsoft

ABSTRACT

Writing IP blocks is only half the battle in accelerator design. Al-
though under-researched and under-discussed, system construction
- gluing together blocks, connecting them to the host, and creating
a host runtime - is a significant challenge with huge implications
for productivity and deployment. ESI (Elastic Silicon Interconnect)
is a system construction compiler which assists in all of the above
tasks which we presented at LATTE’21.

Mostly in response to the needs of real, production systems, ESI
and its plans have evolved considerably since we initially presented
it at LATTE’21. Herein we detail the expanded current and planned
capabilities of ESI and - perhaps more importantly — why they
are important in building useful, complex, performant, supportable
accelerators.

1 INTRODUCTION

While there has been a huge amount of work in languages for hard-
ware accelerator IP block design, compilers for all the bits around
them — connecting them and host software together — primarily
focus on ASIC-style SoC, which tend to focus on one or more CPU
cores driving/coordinating accelerators all tied together with a
fully-connected NoC. communication synthesis[1, 2, 6, 7]. High-
performance FPGA designs rarely fit in that SoC category and thus
require different (though overlapping) features from a compiler,
especially for accelerators with wide production deployment.

Now somewhat of a misnomer, ESI (Elastic Silicon Interconnect)
is a system construction compiler targeting FPGAs. Originally, it
merely provided typed, elastic[3, 4] point-to-point connections in
between IP blocks and to the host. By the time we presented it
at LATTE’21[5], it had grown to include the notion of services —
a mechanism to standardize both access to global resources (e.g.
DRAM) and for the host to access IP resources (e.g. function calls,
telemetry).

When designing an FPGA accelerator intended for deployment,
however, there are a number of practical concerns that are not
addressed (or are only partially addressed) by the current state of
the art. We categorize those concerns and describe the problems,
why it is important, and how ESI (will) ameliorate it.

2 ON-CHIP SIGNALING CONCERNS

Although not well-known or documented (and beyond the scope of
this paper to show), valid-ready skid buffers limit FMax, especially
in congested designs.! Instead, FPGA designs often (should) use
feed-forward datapaths/interconnects (and possibly a runout FIFO
at the end). Multiple levels of complexity exist to deal with back-
pressure (flow control). The simplest is FIFO signaling wherein one
simply pipelines the ’full’ signal from the properly-sized runout

LATTE °24, April 28th, 2024, San Diego, CA, USA
2024.

FIFO. A more complex scheme involves the receiver issuing credits
to the sender.

ESI signaling. At module boundaries (ports), ESI supports two
different control styles: valid-ready and credits. To pipeline the
connections, ESI does support skid buffers; however, it also supports
FIFOs and credits and can/will automatically convert the module
interface control signaling to a different pipeline control signaling
scheme to optimize the interconnect. For instance, if IP block uses
valid-ready signaling the designer can choose to avoid using skid
buffers by instructing ESI to synthesize a FIFO-based pipelining
control scheme with a valid-ready module signaling interface.

3 RESETS AND CLOCKS

ESI channels need to be aware of clock domains since they some-
times must include CDCs, which are notoriously error-prone when
written (or merely instantiated) by hand. Additionally, software
may want to control clock domains to save power when a particular
IP block is not in use.

IP block resets are often just a ’rst’ port which is held high for a
number of cycles. This is insufficient since blocks can take arbitrar-
ily long to come up (e.g. PHY training times are unbounded).

Bus resets occur whenever one has a set of channels between two
different reset domains. Since either side can be reset independen-
tally, the other side must know to reset its contol signaling scheme
(credits). Additionlly, it may also be useful to know at the applica-
tion level that the other side has been reset. For instance, if one
side is a DRAM controller it needs to know that the IP which sent
a request has been reset and isn’t expecting the response any more
thus the DRAM controller needs to drop the outstanding responses.

ESI resets and clocks. At compile time, IP blocks request a
clock and a number of resets associated with that clock. ESI will
synthesize a clock/reset controller (which can be poked from soft-
ware) and drive the requests. ESI will automatically synthesize
CDCs appropriately when it detects channels which need them. For
IP block resets, ESI defines a handshaking reset protocol allowing
the IP block to dynamically inform the reset controller that it is
ready to go. Similarly, ESI defines a handshaking bus reset protocol
and can automatically insert them and drive their signals based on
the block-level reset.

4 HOST CONNECTIVITY CONCERNS

Often a significant bottleneck in end-to-end performance, data
transfer between host and accelerator is riddled with tradeoffs due
to CPU memory systems’ complexity?. Often, it is easier to copy
data into a large slab of physically contiguous shared memory for
DMA transactions at the expense of very significant load on the CPU
merely doing memepys, cutting into or destroying the benefits of

Untuitively, any sort of logic added to the datapath should be avoided. Since full-
throughput skid buffers add a mux in the data path and control logic to drive the select
(which is potentially high-fanout), they not only limit the length of wires (creating
more congestion in the logic areas they are routed through), but they also preclude
using “hyper registers” in the routing fabric (which avoid using ALM/CLB registers).
2Specifically, virtual memory and paging



LATTE ’24, April 28th, 2024, San Diego, CA, USA

John Demme (john.demme@microsoft.com), Microsoft

Host esiquery B E ESI magic num / version Device / Simulation —
@ Reset domain 1 —~
8 2 System manifest
T =0 r [Sysinfo ROM | - > mE
c & < E s < 8 BysNoIROM - Accelerator block 1 ;UU
° & = =] m o < DMA config (read/write) _ Q i >
o ||= O 21|1= |3 3l © [T
18 3||g 3 = ® O s «—p——__, | [DMA doorbells c o < =
2 lle 2|(|g O||3]||T = DMA debug stats S 2 2 g
“E 2lg 2||s N — 5 — g
S o 5 - - — G | DMA i < IS 1 i a
p= 3 o||l® enera engine Accelerator block 2 [¢]
2 — .
S Qs o o . B T
ERE | -
°r: %—, 5 8 oz} g < —
o O 2 = = £ o Application-specific -
5 % > s f__lzh () § DMA engine > l
= o c
= - o L £ (1] Accelerator block 3
L =5 »n
=0ol8 =
Application er n, |oc
— Reset domain 2
[ \ Channels / \
APl | [Library| | Executable ——— o | Hardware service \ Service client | | Reset domain :
| \ (low-bandwidth, FIFO-based)  (high-bandwidth, credit-based) / \

Figure 1: An example ESI system demonstrating some of the solutions discussed.

acceleration. As a result, the importance of avoiding host memcpys
ends up meaning that applications often need custom DMA engines
which know something about host memory layout and implement
application-driven access patterns/control schemes.

ESI host memory access service allows multiple DMA engines
through a layered services approach. The base service is a “host
memory” service which provides access to host memory (simple
reads and writes to/from host memory addresses). On top of that,
different DMA engines can be built with generic or custom control
protocols. One may (and probably will) have a low-performance,
generic DMA engine to enable misc host communications combined
with one or more application-optimized engines.

Supporting this on the host side, the ESI runtime is heavily
layered/pluggable (allowing customization at a number of points in
the API layering). It will be very flexible in terms of data locations,
allowing the API user to highly optimize memcpys.

5 DEPLOYMENT CONCERNS

Partial compatibility. In production, atomic updates of distributed
systems never happen. Rather, one part of the system must support
a previous version until the entire system gets updated. Though
a slightly narrower scope, in hardware acceleration one cannot
break compatibility with host-side software from one version of
an accelerator to the next unless it is actually a relevant breaking
change in the part of the accelerator software is using. In software,
this is typically handled by an RPC protocol like Protobuf/gRPC.
Accelerators cannot afford the overhead of full RPC messaging, so
often times this aspect is overlooked leading to headaches when
trying to update large deployments.

Versioning, metadata, and telemetry. In support scenarios, it is
often useful to quickly be able to tell, “what the $*&# is this FPGA
running???” This may include the image name, version, git hash,
repo url, short descriptions of the various IP blocks (and block pa-
rameters), and other metadata. Similarly, it is often useful to be able
to quickly examine and interpret runtime metrics to debug either
during development or — more importantly — during a high severity
incident. Looking up offsets into the PCle BAR, descriptions, and
the unit of particular telemetry in documentation (which may or

may not be the correct documentation for the image and image
version running) and/or git repositories is both error-prone and
slow.

ESI system manifests contain all relevant information about
what’s on the accelerator and how to communicate with it, includ-
ing metadata about the IP blocks and a list of telemetry metrics.
Further, it gets embedded into the image.? The ESI software runtime
has the capability to get this manifest from any ESI accelerator, so
one can — for instance — determine what an FPGA is running and
gather readable, interpretable telemetry about its operation without
any sideband information or application-specific executables.

Said manifest also contains type signatures for all of the channels
on the accelerator, so the ESI runtime also provides a Python API
which constructs a dynamic, accelerator-specific API to interact
with the accelerator, enabling testing/debugging without needing a
software API generated at design construction time.

Manifests also have the advantage of supporting partial com-
patibility. Statically generated APIs (i.e. C++ APIs) will check - at
runtime - if the generated API for a particlar IP block is indeed
type-compatible with the statically-generated types it uses. It also
exposes the IP block version to the application for it to determine
semantic compatibility.

6 LOOKING FORWARD

These concerns and corresponding ESI solutions represent only the
issues which we have identified and solved (or planned a solution)
to date (though we didn’t cover a few due to space limitations). We
have yet to start exploring multi-FPGA systems, security issues,
FPGA DRAM sharing, or network-attached FPGAs just to name a
few complexity-rich areas. Doubtless there will be others so creative
(or obvious), well planned solutions will be necessary. We look
forward to presenting them in future publications!

REFERENCES

[1] Alon Amid, David Biancolin, Abraham Gonzalez, Daniel Grubb, Sagar Karandikar,
Harrison Liew, Albert Magyar, Howard Mao, Albert Ou, Nathan Pemberton,
Paul Rigge, Colin Schmidt, John Wright, Jerry Zhao, Yakun Sophia Shao, Krste

3In zlib-compressed JSON format, stored in an ESI-standardized location.



The ESI System Construction Compiler in 2024

Asanovi¢, and Borivoje Nikoli¢. 2020. Chipyard: Integrated Design, Simulation,
and Implementation Framework for Custom SoCs. IEEE Micro 40, 4 (2020), 10-21.
https://doi.org/10.1109/MM.2020.2996616

Krste Asanovié¢, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David Bian-
colin, Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser, Adam Izraele-
vitz, Sagar Karandikar, Ben Keller, Donggyu Kim, John Koenig, Yunsup Lee,
Eric Love, Martin Maas, Albert Magyar, Howard Mao, Miquel Moreto, Albert
Ou, David A. Patterson, Brian Richards, Colin Schmidt, Stephen Twigg, Huy
Vo, and Andrew Waterman. 2016. The Rocket Chip Generator. Technical Re-
port UCB/EECS-2016-17. EECS Department, University of California, Berkeley.
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html

Luca P Carloni, Kenneth L McMillan, and Alberto L Sangiovanni-Vincentelli. 2001.
Theory of latency-insensitive design. IEEE Transactions on computer-aided design
of integrated circuits and systems 20, 9 (2001), 1059-1076.

LATTE ’24, April 28th, 2024, San Diego, CA, USA

[4] Josep Carmona, Jordi Cortadella, Mike Kishinevsky, and Alexander Taubin. 2009.

Elastic circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 28, 10 (2009), 1437-1455.

John Demme. 2021. Elastic Silicon Interconnects: Abstracting Communication in
Accelerator Design. In LATTE workshop. https://capra.cs.cornell.edu/latte21/
Paolo Mantovani, Davide Giri, Giuseppe Di Guglielmo, Luca Piccolboni, Joseph
Zuckerman, Emilio G. Cota, Michele Petracca, Christian Pilato, and Luca P. Carloni.
2020. Agile SoC Development with Open ESP. CoRR abs/2009.01178 (2020).
arXiv:2009.01178 https://arxiv.org/abs/2009.01178

Tianrui Wei, Nazerke Turtayeva, Marcelo Orenes-Vera, Omkar Lonkar, and
Jonathan Balkind. 2023. Cohort: Software-oriented acceleration for heterogeneous
socs. In Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 3. 105-117.


https://doi.org/10.1109/MM.2020.2996616
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
https://capra.cs.cornell.edu/latte21/
https://arxiv.org/abs/2009.01178

	Abstract
	1 Introduction
	2 On-chip signaling concerns
	3 Resets and clocks
	4 Host connectivity concerns
	5 Deployment concerns
	6 Looking forward
	References

