
Non-Newtonian Accelerators: Low-Compromise
Design for Fault Tolerant Accelerators

Abstract
To achieve longevity in the face of increasingly fault-prone
datapaths, fault tolerance is needed, especially in accelerator
datapaths. We propose a novel architecture for accelerator
fault tolerance, Non-Newtonian Accelerators, which lever-
ages modular acceleration to enable fault tolerance without
burdensome area requirements.

In order to streamline the development and enforce mod-
ular conventions, we introduce the Viscosity language, an
actor based approach to hardware-software co-design.
To show the feasibility of Non-Newtonian Accelerators,

we show three case-studies, FFT, AES, and DCT accelera-
tors each demonstrating how Non-Newtonian Accelerators
perform under faults.

1 Introduction
As Moore’s Law comes to an end [16], the steady perfor-
mance improvements which came from transistor miniaturi-
sation will no longer be as readily accessible.
Additionally, longer hardware refresh cycles mean that

the hardware itself will have to stay functional longer. How-
ever, in data center contexts, various device errors can occur,
cutting the life of the processors short [3, 8, 13, 20].
These two trends are seemingly in competition. The re-

quired life-cycle of hardware is increasing but the practical
lifetime of hardware is staying the same or decreasing [7].
We choose to focus on hardware accelerators, which have
been the key to improvements in performance for various
domain specific applications [1, 6, 14]. Moreover, they have
become ubiquitous in modern data center processors [10, 16].

Without fault tolerance, when a fault does occur inside an
accelerator, in the worst case, an accelerator can be replaced
by a fully software implementation of the same algorithm.
In contrast to this method, we propose Non-Newtonian
Accelerators, an architectural design principle leveraging
modular design to increase the fault tolerance of accelerators.

2 Background
2.1 Motivation
To assess the effect of fault tolerance on data centers, we
model data centers employing two types of accelerators. The
first are accelerators which are not fault tolerant, which
we call "single fault accelerators" (SFA). These need to be
replaced after a single fault has been detected. The second
type of accelerators we call "variable fault accelerators" (VFA)
which is a generalisation of the Non-Newtonian Accelerator
architecture we propose. These can handle multiple faults

Figure 1. The structure of the proposed accelerator genera-
tion and structure

up to some threshold. Once this threshold has been reached,
the accelerator is unusable and has to be replaced.

We found that as the likelihood of faults approaches zero,
the difference between the two types of accelerators in-
creases. By using VFAs, data centers could reduce the number
of processors replaced to less than one on average, even at
fault likelihoods where using SFAs would result in over 50
replacements.

3 Non-Newtonian Accelerators
For an accelerator implementing a function 𝑓 , we model a
single interface for the input and a single interface for the
output of the accelerator. Suppose that a non-transient fault
occurs in some arbitrary location inside the accelerator. This
means that for some input into the accelerator, the acceler-
ator will produce the incorrect output. This is despite the
fact that the fault itself may make up an extremely small
portion of the total accelerator design. Ideally, there should
be a way to utilise the unbroken logic within the accelera-
tor, processing the broken step using some other method of
computation.

To build a Non-Newtonian Accelerator using Viscosity (or
another HDL), create sub-accelerators capturing functions
𝑓1, 𝑓2, . . . , 𝑓𝑛 such that 𝑓𝑛◦. . .◦𝑓2◦𝑓1 ≡ 𝑓 . Each sub-accelerator
has two sets of interfaces, one set of interfaces with the
software thread and one set of interfaces with the previous
and following sub-accelerators.

Under no faults, the accelerator acts as one cohesive accel-
erator (such that there is no latency as opposed to a normal
accelerator). However, after a fault, the system can adapt to
avoid it. There is no singular method of fault recognition
that must be used; any method which can send the signal

1



to the sub-accelerators can be used with Non-Newtonian
Accelerators. Suppose you have a three stage accelerator and
the second stage breaks. The accelerator adapts to bypass the
faulty logic. After the first stage, the output of 𝑓1 is moved
to the software thread via the software interface. The soft-
ware then processes the data using an executable version
of 𝑓2 before moving the data onto 𝑓3 where the rest of the
accelerator can run normally using the interface between
sub-accelerators.

Our implementation of Non-Newtonian Accelerators runs
on a modified version of the Cohort Engine [21]. Cohort
eases the burden of adding new accelerators while keep-
ing system-level guarantees by providing FIFO queue end-
points for communication between software threads and
accelerators built on top of cache-coherent memory queues.
Whereas the Cohort Engine supports a single queue per tile,
our modified version supports multiple queues interfacing
with multiple sub-accelerators. Additionally, we introduce
queue-bypassing to enable sub-accelerators to communicate
with each other directly. The Cohort consumers and pro-
ducers interact with the software thread while the bypass
interfaces communicate directly with the previous and fol-
lowing sub-accelerators.

4 Viscosity
The design of Non-Newtonian Accelerators requires both
a software version and a hardware version of each sub-
accelerator. There are three reasons we would want to gen-
erate both the hardware and software from a single descrip-
tion: Firstly, it makes Non-Newtonian Accelerators simpler
to design since the operation need only be described once.
Secondly, it ensures that the software and hardware versions
of the operation are logically equivalent which is especially
important with the complexity of subdividing hardware mod-
ules. Lastly, it lets the language enforce the sub-accelerator
modularity convention.
A naive version of generating both a hardware and soft-

ware description from a single description could be done by
running hardware simulation of the modules. Given the high
overhead of hardware simulators, they would not be suitable
for the software descriptions needed for Non-Newtonian
Accelerators. We opted to create our own language, Viscos-
ity, which compiles to C and to Verilog (via Shakeflow [12]).
Shakeflow is a Rust-based DSL which improves on previ-
ous functional HDLs by adding latency-insensitive interface
combinators which are perfect for modelling the accelerators
we target. Other HDLs have used the actor paradigm but do
not support native software and hardware generation [18].

5 Evaluation Methodology
We implemented Non-Newtonian Accelerators with a mod-
ified Cohort Engine on the OpenPiton+Ariane RISC-V Re-
search Platform [4, 21]. We then booted Linux (v6.2, built via

Buildroot) on aDigilent Genesys2 FPGA (Kintex-7 XC7K32T5-
2FFG900C) running at a clock speed of 67 MHz. We show
the potential benefit of three different accelerators built as
Non-Newtonian Accelerators: an FFT, AES and DCT acceler-
ator.

6 Results
When there is no fault present, the FFT Accelerator per-
forms with only 7.4% of the cycles when compared to the
software implementation, a speedup of 13.5×. When there is
a single fault present, the FFT Accelerator runs in approxi-
mately 19.3% of the cycles of its purely software counterpart,
a speedup of 5.181×.
We designed an AES accelerator with two different con-

figurations: an 11-stage AES accelerator and a 3-stage AES
accelerator.

When a fault does occur in the hardware and the software
fallback takes over, the efficiency of the system drops more
than for the FFT or DCT accelerators with the AES acceler-
ator taking 58% of software’s execution time under a fault
rather than 7% it would otherwise without a fault.
We also analysed the performance of computing a 2-D

Discrete Cosine Transform using a Non-Newtonian Ac-
celerator. Compared to the other accelerators we evaluated,
the DCT accelerator has the lowest software to hardware
cycle ratio, which is due to the design already leveraging the
fastest known DCT algorithm.
With one faulty stage, the DCT accelerator records a

speedup of 2.87×, an encouraging performance as the soft-
ware implementation is already heavily optimised.

7 Fault Detection
Our goal with this tolerance mechanism was that it would
be compatible with nearly any fault detection mechanism
that is available, software or hardware. There has previously
been much work regarding how to detect the presence of
non-transient faults in hardware [2, 5, 19].

Software can directly set the registers inside the accelera-
tor datapath to bypass fault ridden components. If hardware
based detection is used, then the detection mechanism can
be hardwired to the bypass signals.

8 Related Work
Most work on fault tolerance in accelerators has come from
exploring hardware generated from HLS tools [22]. Karri
and Orailoglu proposed building fault tolerant ASICs using
HLS [15, 17]. They reduced the area trade-off of N-Module
redundancies by sharing functional units between modules.
The work has been continuously iterated on by mixing time
and space redundancies [9] and by introducing various meth-
ods to better explore the design space such as genetic algo-
rithms [11, 22]. Other works have focused on only building
redundancies for only the most critical paths [9].

2



9 Conclusion
Thiswork presented theNon-NewtonianAcceleratormethod-
ology as well as the Viscosity language, a tool for building
Non-Newtonian Accelerators, which helps enforce this mod-
ular paradigm. Our evaluations show how this accelerator
structure can reduce slowdown under faults in the FFT, AES,
and DCT accelerators.

References
[1] Tim Ansell. Google investment in open source custom hardware

development including no-cost shuttle program. In Proceedings of
the 2023 International Symposium on Physical Design, ISPD ’23, page
207, New York, NY, USA, 2023. Association for Computing Machinery.
ISBN 9781450399784. doi: 10.1145/3569052.3580028. URL https://doi.
org/10.1145/3569052.3580028.

[2] Anna Antola, Vincenzo Piuri, and Mariagiovanna Sami. High-level
synthesis of data paths with concurrent error detection. In 13th In-
ternational Symposium on Defect and Fault-Tolerance in VLSI Systems
(DFT ’98), 2-4 November 1998, Austin, TX, USA, Proceedings, pages 292–
300. IEEE Computer Society, 1998. doi: 10.1109/DFTVS.1998.732178.
URL https://doi.org/10.1109/DFTVS.1998.732178.

[3] David F. Bacon. Detection and prevention of silent data corruption
in an exabyte-scale database system. In The 18th IEEE Workshop on
Silicon Errors in Logic – System Effects, 2022. URL http://research.
google/pubs/pub51477/.

[4] Jonathan Balkind, Michael McKeown, Yaosheng Fu, Tri Nguyen, Yanqi
Zhou, Alexey Lavrov, Mohammad Shahrad, Adi Fuchs, Samuel Payne,
Xiaohua Liang, Matthew Matl, and David Wentzlaff. OpenPiton: An
open source manycore research framework. SIGARCH Comput. Archit.
News, 44(2):217–232, mar 2016. ISSN 0163-5964. doi: 10.1145/2980024.
2872414. URL https://doi.org/10.1145/2980024.2872414.

[5] M. A. Breuer. Hardware fault detection. In Proceedings of the December
9-11, 1968, Fall Joint Computer Conference, Part II, AFIPS ’68 (Fall,
part II), page 1502–1503, New York, NY, USA, 1968. Association for
Computing Machinery. ISBN 9781450379007. doi: 10.1145/1476706.
1476792. URL https://doi.org/10.1145/1476706.1476792.

[6] Jared Casper and Kunle Olukotun. Hardware acceleration of data-
base operations. In Proceedings of the 2014 ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Arrays, FPGA ’14, page
151–160, New York, NY, USA, 2014. Association for Computing Ma-
chinery. ISBN 9781450326711. doi: 10.1145/2554688.2554787. URL
https://doi.org/10.1145/2554688.2554787.

[7] Jacqueline Davis, Daniel Bizo, Andy Lawrence, Owen Rogers,
and Max Smolaks. Uptime institute global data center survey
2022. https://uptimeinstitute.com/resources/research-and-reports/
uptime-institute-global-data-center-survey-results-2022, 2022.

[8] Harish Dattatraya Dixit, Sneha Pendharkar, Matt Beadon, ChrisMason,
Tejasvi Chakravarthy, Bharath Muthiah, and Sriram Sankar. Silent
data corruptions at scale. CoRR, abs/2102.11245, 2021. URL https:
//arxiv.org/abs/2102.11245.

[9] Shane T. Fleming and David B. Thomas. Stitchup: Automatic con-
trol flow protection for high level synthesis circuits. In 2016 53nd
ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–6,
2016. doi: 10.1145/2897937.2898097.

[10] Adi Fuchs and David Wentzlaff. The accelerator wall: Limits of chip
specialization. 02 2019. doi: 10.1109/HPCA.2019.00023.

[11] Michael Glass, Martin Lukasiewycz, Thilo Streichert, Christian
Haubelt, and Jurgen Teich. Reliability-aware system synthesis. In
2007 Design, Automation and Test in Europe Conference and Exhibition,
pages 1–6, 2007. doi: 10.1109/DATE.2007.364626.

[12] Sungsoo Han, Minseong Jang, and Jeehoon Kang. Shakeflow: Func-
tional hardware description with latency-insensitive interface com-
binators. In Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Volume 2, ASPLOS 2023, page 702–717, New York, NY, USA,
2023. Association for Computing Machinery. ISBN 9781450399166.
doi: 10.1145/3575693.3575701. URL https://doi.org/10.1145/3575693.
3575701.

[13] Peter H. Hochschild, Paul Turner, Jeffrey C. Mogul, Rama Govindaraju,
Parthasarathy Ranganathan, David E. Culler, and Amin Vahdat. Cores
that don’t count. In Proceedings of the Workshop on Hot Topics in
Operating Systems, HotOS ’21, page 9–16, New York, NY, USA, 2021.
Association for Computing Machinery. ISBN 9781450384384. doi: 10.
1145/3458336.3465297. URL https://doi.org/10.1145/3458336.3465297.

[14] Tom Hogervorst, Răzvan Nane, Giacomo Marchiori, Tong Dong Qiu,
Markus Blatt, and Alf Birger Rustad. Hardware acceleration of high-
performance computational flow dynamics using high-bandwidth
memory-enabled field-programmable gate arrays. ACM Trans. Re-
configurable Technol. Syst., 15(2), dec 2021. ISSN 1936-7406. doi:
10.1145/3476229. URL https://doi.org/10.1145/3476229.

[15] R. Karri and A. Orailoglu. High-level synthesis of fault-tolerant asics.
In 1992 IEEE International Symposium on Circuits and Systems (ISCAS),
volume 1, pages 419–422 vol.1, 1992. doi: 10.1109/ISCAS.1992.229924.

[16] Charles E. Leiserson, Neil C. Thompson, Joel S. Emer, Bradley C.
Kuszmaul, Butler W. Lampson, Daniel Sanchez, and Tao B. Schardl.
There’s plenty of room at the top: What will drive computer perfor-
mance after moore’s law? Science, 368(6495):eaam9744, 2020. doi:
10.1126/science.aam9744. URL https://www.science.org/doi/abs/10.
1126/science.aam9744.

[17] A. Orailoglu and R. Karri. A design methodology for the high-level
synthesis of fault-tolerant asics. InWorkshop on VLSI Signal Processing,
pages 417–426, 1992. doi: 10.1109/VLSISP.1992.641073.

[18] Haven Skinner, Rafael Trapani Possignolo, and Jose Renau. Liam: An
actor based programming model for hdls. In Proceedings of the 15th
ACM-IEEE International Conference on Formal Methods and Models for
System Design, MEMOCODE ’17, page 185–188, New York, NY, USA,
2017. Association for Computing Machinery. ISBN 9781450350938.
doi: 10.1145/3127041.3127060. URL https://doi.org/10.1145/3127041.
3127060.

[19] F.N. Taher. Fault Tolerance in Hardware Accelerators: Detection and
Mitigation. University of Texas at Dallas, 2019. URL https://books.
google.com/books?id=HnohzgEACAAJ.

[20] Shaobu Wang, Guangyan Zhang, Junyu Wei, Yang Wang, Jiesheng
Wu, and Qingchao Luo. Understanding silent data corruptions in a
large production cpu population. In Proceedings of the 29th Sym-
posium on Operating Systems Principles, SOSP ’23, page 216–230,
New York, NY, USA, 2023. Association for Computing Machinery.
ISBN 9798400702297. doi: 10.1145/3600006.3613149. URL https:
//doi.org/10.1145/3600006.3613149.

[21] Tianrui Wei, Nazerke Turtayeva, Marcelo Orenes-Vera, Omkar Lonkar,
and Jonathan Balkind. Cohort: Software-oriented acceleration for
heterogeneous socs. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 3, ASPLOS 2023, page 105–117, New
York, NY, USA, 2023. Association for Computing Machinery. ISBN
9781450399180. doi: 10.1145/3582016.3582059. URL https://doi.org/10.
1145/3582016.3582059.

[22] Zhiqi Zhu, Farah Naz Taher, and Benjamin Carrion Schafer. Exploring
design trade-offs in fault-tolerant behavioral hardware accelerators. In
Proceedings of the 2019 on Great Lakes Symposium on VLSI, GLSVLSI ’19,
page 291–294, New York, NY, USA, 2019. Association for Computing
Machinery. ISBN 9781450362528. doi: 10.1145/3299874.3318020. URL
https://doi.org/10.1145/3299874.3318020.

3

https://doi.org/10.1145/3569052.3580028
https://doi.org/10.1145/3569052.3580028
https://doi.org/10.1109/DFTVS.1998.732178
http://research.google/pubs/pub51477/
http://research.google/pubs/pub51477/
https://doi.org/10.1145/2980024.2872414
https://doi.org/10.1145/1476706.1476792
https://doi.org/10.1145/2554688.2554787
https://uptimeinstitute.com/resources/research-and-reports/uptime-institute-global-data-center-survey-results-2022
https://uptimeinstitute.com/resources/research-and-reports/uptime-institute-global-data-center-survey-results-2022
https://arxiv.org/abs/2102.11245
https://arxiv.org/abs/2102.11245
https://doi.org/10.1145/3575693.3575701
https://doi.org/10.1145/3575693.3575701
https://doi.org/10.1145/3458336.3465297
https://doi.org/10.1145/3476229
https://www.science.org/doi/abs/10.1126/science.aam9744
https://www.science.org/doi/abs/10.1126/science.aam9744
https://doi.org/10.1145/3127041.3127060
https://doi.org/10.1145/3127041.3127060
https://books.google.com/books?id=HnohzgEACAAJ
https://books.google.com/books?id=HnohzgEACAAJ
https://doi.org/10.1145/3600006.3613149
https://doi.org/10.1145/3600006.3613149
https://doi.org/10.1145/3582016.3582059
https://doi.org/10.1145/3582016.3582059
https://doi.org/10.1145/3299874.3318020

	Abstract
	1 Introduction
	2 Background
	2.1 Motivation

	3 Non-Newtonian Accelerators
	4 Viscosity
	5 Evaluation Methodology
	6 Results
	7 Fault Detection
	8 Related Work
	9 Conclusion
	References

