
cmt2: Rule-Based Hardware Description in Rust with Temporal
Semantics

Youwei Xiao
School of Integrated Circuits, Peking

University
China

Zizhang Luo
School of Integrated Circuits, Peking

University
China

Yun Liang
Peking University

China

ABSTRACT
cmt2 represents the second generation of Cement [8], featuring a
redesigned Rust embedding and introducing new rule-based hard-
ware description capabilities. This paper demonstrates how cmt2
seamlessly integrates Rust embedding, rule-based hardware design,
and software-like procedural control logic description. Addition-
ally, we present a novel temporal semantics extension for cmt2’s
rule-based features, enabling the composition of hybrid latency-
sensitive and latency-insensitive hardware. This approach supports
general, modular, and efficient hardware design at an appropriate
level of abstraction.

1 INTRODUCTION
Hardware design methodologies encompass a wide spectrum, each
providing distinct levels of abstraction and unique features tailored
to specific design tasks. Selecting an appropriate methodology—one
that aligns with the desired abstraction and characteristics—is criti-
cal. In this work, we focus on general, modular, and accelerator-rich
design scenarios, such as modern System-on-Chip (SoC) designs,
where diverse processors and accelerators must be implemented
and hierarchically integrated into a cohesive system.

To address these challenges, we present cmt2, an evolution of
Cement [8]. Building on Cement’s strengths in Rust embedding
and software-like procedural control logic description for single-
accelerator design, cmt2 introduces rule-based hardware design to
better support modular design practices. We have made the cmt2
version available at https://github.com/pku-liang/Cement.

However, existing rule-based hardware design methodologies of-
ten rely exclusively on latency-insensitive compositionmechanisms.
While versatile, this approach can introduce unnecessary overhead
for modules with statically analyzable latency, which is prevalent
in accelerator design. To address this limitation, we propose a novel
temporal semantics extension for cmt2’s rule-based features. This
extension enables hybrid latency-sensitive and latency-insensitive
hardware composition, minimizing hardware overhead while pre-
serving modularity.

In this paper, we present how cmt2 integrates diverse hardware
description features into a unified embedded HDL and highlight its
robust backend support.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
LATTE ’25, March 30, 2025, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s).

1 itfc_declare!{
2 param T;
3 pub struct A2B { a: input param T, b: output param T };
4 method put(a);
5 method get()->(b);
6 }

(a) module interface

1 #[module]
2 fn fir_3(t: &Type, a0: i32, a1: i32, a2: i32) -> A2B {
3 let io = io! {T: t};
4 let mut reg0 = instance!(reg(t));
5 // .. also instantiate reg1, reg2
6 let put = method!((io.a) { reg0 %= io.a; });
7 let shift = rule!(() { reg2 %= &reg1; reg1 %= &reg0; });
8 let get = method!(()->(io.b) {
9 ret!(&reg0*a0.lit(t) + &reg1*a1.lit(t) + &reg2*a2.lit(t))
10 });
11 schedule!(get, shift, put);
12 }

(b) module implementation

a b
fir_3

A2B put shift get

(c) illustration diagram

Figure 1: Example of FIR filter of order 3 in cmt2

2 CMT2’S DESIGN AND FEATURES
2.1 Rust Embedding
cmt2 is embedded in Rust using Rust’s powerful procedural macro
system, as opposed to modifying the rustc compiler with plug-
ins, as done in HazardFlow [5]. The rationale behind the design
choice is two-folded: Procedural macros (1) offer greater flexibil-
ity for custom syntax, and (2) provide a clear distinction between
the embedded DSL and the host language. cmt2’s macros which
establish a well-defined boundary between hardware description
regions and software code regions dedicated to parameterization
and construction.

Figure 1 illustrates a 2-order FIR (Finite Impulse Response) filter
implemented in cmt2. The design consists of two parts: the interface
declaration (Figure 1a) and the module implementation (Figure 1b).
The interface, defined within the itfc_declare! macro, specifies
the module’s type parameters, ports, and methods. In this example,
the putmethod processes data from the input port a, while the get
method returns data to the output port b. Figure 1b demonstrates a
module implementation, where the #[module] macro transforms
the function fir_3 into a module adhering to the A2B interface, as
illustrated in Figure 1c. On line 3, the data type t is assigned to the
parameter T of A2B. Notably, a single module interface can support
multiple implementations; for instance, the A2B interface can be
realized by FIR filters of varying orders. For further details, refer to
the full example.

https://github.com/pku-liang/Cement
https://github.com/pku-liang/Cement/blob/cmt2/crates/cmtc/examples/fir.rs


LATTE ’25, March 30, 2025, Rotterdam, Netherlands Youwei Xiao, Zizhang Luo, and Yun Liang

1 let start = method!(fsm; () {
2 for_!((
3 i %= 0.lit(&at); // init: i=0
4 0.lit(&at).lt(n.lit(&at)); // init_cond: 0<n
5 i %= &i + 1.lit(&at); // update: i'=i+1
6 i.lt((n-1).lit(&at)) // update_cond: i'<n-1
7 ) {/* j-loop and k-loop */ }) // body can read register i
8 });

Figure 2: Example of GEMM loops in cmt2

2.2 Rule-Based Hardware Design
Lines 6-11 in Figure 1b describe the module logic using rules, meth-
ods, and a schedule specification. The methods put and get align
with the interface and are analogous to methods in Bluespec Sys-
temVerilog (BSV) and Haskell (BH). These methods execute only
when invoked by a rule. The rule shift defines the shifting logic
among registers. Similar to BSV/BH rules, cmt2’s rules attempt to
execute proactively every clock cycle. Line 11 specifies the sched-
ule, which defines the hardware concurrency strategy among rules
and methods. This schedule determines the deterministic order in
which the effects of rules and methods become observable within
the same clock cycle, as proposed in Kôika [1].

Unlike Kôika which doesn’t own a module system, cmt2 extends
the schedule specification to modular designs.While cmt2’s schedule
specifications cannot describe the total order of all rules across
multiple modules in a circuit, every pair of rules manipulating
any shared states is inferred to have a deterministic order relation.
Consequently, rule execution effects in cmt2 can be serialized and
deduced with cycle accuracy.

To our knowledge, cmt2 is the first embedded HDL to support
rule-based hardware design. Combining the advantages of hardware
rules and rust embedding, cmt2 becomes a good choice for hard-
ware design tasks where different components interact closely with
customization needs. Modern CPU design is one typical scenario of
such characteristics. The core stages communicate intensively and
mutate shared states such as the instruction queue (IQ) in an out-of-
order CPU, where hardware rules robustly resolve composability
challenges. Besides, CPU designs are highly parameterized with
diverse instruction-set extensions implemented as hardware com-
ponents to be composed, and embedding in Rust provides powerful
parameterization support and allows for easy extension.

2.3 Procedural Control Logic Description
cmt2 reimplements the event-based procedural control logic de-

scription from Cement [8] using rules. This reimplementation is
straightforward, as both rules in cmt2 and events in Cement fun-
damentally represent a group of hardware operations that always
execute simultaneously. Figure 2 demonstrates the outermost loop
description for a matrix multiplication operator in cmt2. For fur-
ther details, refer to the full example. In cmt2, the for_! macro
(line 4) is used to describe looping control logic. Additionally, cmt2
supports primitives such as par and if for constructing procedural
descriptions. The start method initiates the finite-state machine
(FSM) synthesized from the procedural description, which is imple-
mented as state registers and rules that update these states.With the
procedural description support, cmt2 provides great convenience
for accelerator design tasks by saving efforts of designing FSMs
adopted by data motion and computation phases of accelerators.

multiply

s0 s1 s2calc use

(a) Latency-insensitive

multiply

s0 s1 s2calc use
#0 #1 #1 #0

(b) Latency-sensitive

1 let calc = method! { (io.a, io.b) {
2 mult.s0(io.a, io.b)
3 }};
4 let use_ = method! {
5 [calc.delay_by(2)] // calc#2
6 () {let c=mult.s2(); /*use c*/}
7 };
8 let calc_use = method! {multicycle;
9 (io.a, io.b){ mult.s0(io.a, io.b);
10 let c = mult.s2(); /*use c*/ }};

Figure 3: Temporal semantics for rules

3 TEMPORAL SEMANTICS FOR RULES
Rule-based hardware design in cmt2 naturally supports latency-

insensitive composition, as rules are atomic and take effect only
when their guard conditions are satisfied. This aligns directly with
the principles of latency-insensitive specification. However, latency-
sensitive composition often offers greater hardware efficiency but
requires temporal semantics to statically analyze the latency of rule
execution—a feature absent in prior rule-based HDLs. To address
this, we extend cmt2’s rule abstraction with inter-rule temporal
relationships and multi-cycle rules.

Figure 3 demonstrates cmt2’s temporal extension. Figure 3a illus-
trates latency-insensitive composition, where blue arrows represent
auxiliary signals, such as s0’s readiness for calc and s2’s valid-
ness for use. In contrast, latency-sensitive composition in Figure 3b
eliminates the need for auxiliary signals through static analysis. At
line 5, the delay_by construct specifies a temporal-relationship-
based guard condition for use, ensuring it can only execute two
cycles after calc executes. The compiler verifies the legality of
these temporal relationships and reports any analyzable violations.

Lines 8-10 presents amulti-cycle rule that achieves the same func-
tionality as lines 1-7. The compiler synthesizes each multi-cycle
rule into a set of rules, prioritizing latency-sensitive composition
whenever possible. Our synthesis technique inherits basic problem
formulation with data dependency constraints and timing con-
straints from high-level synthesis (HLS) scheduling [2]. However,
instead of scheduling operations to completely static timing steps
as HLS does, our synthesis schedules operations into single-cycle
rules, and also inserts necessary buffers and control logic for hybrid
latency-sensitive/-insensitive composition.

4 BACKENDS AND SIMULATION SUPPORT
We implement a set of backends for cmt2’s compiler, targeting FIR-
RTL [4], SystemVerilog [3], and simulation tools such as Verilator
[7] and Khronos [9]. This rich backend support enables cmt2 to
be applicable for a wide range of scenarios and audiences. For in-
stance, the FIRRTL backend allows cmt2 to serve as a drop-in HDL
choice for Chipyard-based SoC development, where generators like
Rocket Chip [6] can be reused with cmt2 at the FIRRTL level. For
simulation, cmt2 supports embedded-in-rust rule-based testbench
specification, natively enabling high-level and parallel testbench
construction with flexible parameterization.

5 FUTUREWORK
We plan to stabilize cmt2’s temporal semantics features and make
them publicly available in the near future. Our long-term goal is to
develop a cmt2-based SoC framework to construct heterogeneous
modular hardware systems.

https://github.com/pku-liang/Cement/blob/cmt2/crates/cmtc/examples/gemm.rs


cmt2 : Rule-Based Hardware Description in Rust with Temporal Semantics LATTE ’25, March 30, 2025, Rotterdam, Netherlands

REFERENCES
[1] Thomas Bourgeat, Clément Pit-Claudel, Adam Chlipala, and Arvind. 2020. The

essence of Bluespec: a core language for rule-based hardware design. In Proceed-
ings of the 41st ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI 2020). Association for Computing Machinery, New York,
NY, USA, 243–257. https://doi.org/10.1145/3385412.3385965

[2] J. Cong and Zhiru Zhang. 2006. An efficient and versatile scheduling algorithm
based on SDC formulation. In 2006 43rd ACM/IEEE Design Automation Conference.
433–438. https://doi.org/10.1145/1146909.1147025

[3] Design Automation Standards Committee. 2024. IEEE Standard for SystemVer-
ilog–Unified Hardware Design, Specification, and Verification Language. IEEE Std
1800-2023 (Revision of IEEE Std 1800-2017) (Feb. 2024), 1–1354. https://doi.org/10.
1109/IEEESTD.2024.10458102 Conference Name: IEEE Std 1800-2023 (Revision of
IEEE Std 1800-2017).

[4] Adam Izraelevitz, Jack Koenig, Patrick Li, Richard Lin, AngieWang, Albert Magyar,
Donggyu Kim, Colin Schmidt, Chick Markley, Jim Lawson, and Jonathan Bachrach.
2017. Reusability is FIRRTL ground: Hardware construction languages, compiler
frameworks, and transformations. In 2017 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). 209–216. https://doi.org/10.1109/ICCAD.2017.
8203780 ISSN: 1558-2434.

[5] Minseong Jang, Jungin Rhee, Woojin Lee, Shuangshuang Zhao, and Jeehoon Kang.
2024. Modular Hardware Design of Pipelined Circuits with Hazards. Proceedings
of the ACM on Programming Languages 8, PLDI (June 2024), 28–51. https://doi.
org/10.1145/3656378

[6] Chipyard Team. 2025. Rocket Chip Generator. https://chipyard.readthedocs.io/
en/latest/Generators/Rocket-Chip.html

[7] Veripool. 2024. Verilator. https://www.veripool.org/verilator/
[8] Youwei Xiao, Zizhang Luo, Kexing Zhou, and Yun Liang. 2024. Cement: Stream-

lining FPGA Hardware Design with Cycle-Deterministic eHDL and Synthesis.
In Proceedings of the 2024 ACM/SIGDA International Symposium on Field Pro-
grammable Gate Arrays (FPGA ’24). Association for Computing Machinery, New
York, NY, USA, 211–222. https://doi.org/10.1145/3626202.3637561

[9] Kexing Zhou, Yun Liang, Yibo Lin, RunshengWang, and Ru Huang. 2023. Khronos:
Fusing Memory Access for Improved Hardware RTL Simulation. In Proceedings of
the 56th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO
’23). Association for Computing Machinery, New York, NY, USA, 180–193. https:
//doi.org/10.1145/3613424.3614301

https://doi.org/10.1145/3385412.3385965
https://doi.org/10.1145/1146909.1147025
https://doi.org/10.1109/IEEESTD.2024.10458102
https://doi.org/10.1109/IEEESTD.2024.10458102
https://doi.org/10.1109/ICCAD.2017.8203780
https://doi.org/10.1109/ICCAD.2017.8203780
https://doi.org/10.1145/3656378
https://doi.org/10.1145/3656378
https://chipyard.readthedocs.io/en/latest/Generators/Rocket-Chip.html
https://chipyard.readthedocs.io/en/latest/Generators/Rocket-Chip.html
https://www.veripool.org/verilator/
https://doi.org/10.1145/3626202.3637561
https://doi.org/10.1145/3613424.3614301
https://doi.org/10.1145/3613424.3614301

	Abstract
	1 Introduction
	2 cmt2's Design and Features
	2.1 Rust Embedding
	2.2 Rule-Based Hardware Design
	2.3 Procedural Control Logic Description

	3 Temporal Semantics for Rules
	4 Backends and Simulation Support
	5 Future Work
	References

