
High-Level Synthesis with Linear Types
Izumi Tanaka, Ken Sakayori, Shinya Takamaeda-Yamazaki, Naoki Kobayashi

The University of Tokyo
Japan

Abstract
A specialized memory system with sufficient on-chip data reuse
and off-chip memory bandwidth utilization is crucial for efficient
hardware accelerators. High-level synthesis (HLS) is powerful in
developing such accelerators, but it still requires careful manual op-
timization via directives in designing high-performance specialized
memory systems. In this paper, we propose a novel HLS compiler
with a dedicated linear type system for recognizing memory access
patterns in an input program. The compiler automatically translates
naïve programs without any directives into optimized HLS code
with directives for a specialized memory system. Based on analyzed
memory access patterns through the proposed linear type, the com-
piler inserts on-chip buffers to maximize data reuse and coalesces
multiple off-chip memory accesses into long off-chip burst transfers.
Experiments using the prototype compiler and a real FPGA board
confirmed certain performance improvements.

1 Introduction
In high-level synthesis (HLS) development, optimizing data han-
dling is crucial to improve hardware efficiency [4]. The program in
Figure 1 is a filtering function using a naïve algorithm, whereas the
program in Figure 2 achieves the same result but uses buffering and
stream processing. The program in Figure 2 (i) stores a value read
from the input in the buffer buf, and reuses it to reduce external
memory access, and (ii) reads inputs from a stream instead of an
array to avoid costly random memory access. When synthesizing
hardware from these two functions, the function in Figure 2 per-
forms about 10 times faster than the naïve implementation when
the data size is large. This significant performance improvement
can be attributed to two factors: First, buffering reduces the number
of accesses to external memories by the kernel functions. Second,
stream processing allows data to be prepared in advance without
waiting for the computation to complete.

We propose a method for automatically translating naïve pro-
grams such as the one in Figure 1 to more efficient programs such
as the one in Figure 2, which uses buffering and stream process-
ing. This approach enables efficient hardware design through HLS
without requiring a deep understanding of hardware specifics. We
formalize the method as type-based two-step program translations:
buffer translation and stream translation.

The buffer translation inserts buffering commands to avoid re-
peated access to the same memory index. Applying buffer transla-
tion to the program in Figure 1, we obtain the program in Figure 3,
which accesses each memory index just once. The stream trans-
lation, on the other hand, transforms arrays into streams, where
possible. Using a novel linear type system, the program in Figure 3
is translated into the stream-based version shown in Figure 2. We
have implemented a prototype tool for automatic program transla-
tion and confirmed performance improvements in several programs
through experiments.

1 filter(input , output) {

2 for (i = 0; i < N-1; i++) {

3 output[i] := (input[i] + input[i+1]) / 2; } }

Figure 1: A Naïve Filtering Program

1 filter(input , output) {

2 buf := input.read();

3 for (i = 0; i < N-1; i++) {

4 buf' := input.read();

5 output.write((buf + buf') / 2);

6 buf := buf'; } }

Figure 2: A Fast Filtering Program

1 filter(input , output) {

2 // input: rarray[0,N-1,1]

3 buf := input [0];

4 // input: rarray[1,N-1,1]

5 for (i = 0; i < N-1; i++) {

6 buf' := input[i+1];

7 // input: rarray[i+2,N-1,1]

8 output[i] := (buf + buf') / 2;

9 buf := buf'; } }

Figure 3: An Intermediate Program after Buffer Translation

RelatedWork. We are unaware of any prior work on a type-based
approach to optimize HLS. Nigam et al. [4] apply affine types to
restrict HLS to well-performing programs, eliminating inefficient
programs but requiring users to write efficient ones manually. Seto
et al. [6, 7] used scalar replacement and the polyhedral model to
optimize C programs for HLS, improving hardware area and perfor-
mance. We expect that our type-based approach offers more flexi-
bility for program translation, making it better suited for handling
non-array data structures and control structures such as recursion.

2 Buffer Translation
To achieve buffer translation, we introduce linear types rarray[𝑆]
andwarray[𝑆], which respectively describe read/write-only arrays
where 𝑆 is the set of array indices that can be accessed. The trans-
lation is expressed by the type-based translation relation Δ | Γ ⊢
𝑒 ⊣ Δ′ | Γ′ =⇒ 𝑒′, where (i) 𝑒 and 𝑒′ are the source and target
programs, (ii) Γ and Γ′ are type environments that respectively
describe the type of each variable before and after the execution
of 𝑒′, and (iii) Δ and Δ′, called buffer environments, are of the
form 𝑏1 : 𝑎[𝑥1], . . . , 𝑏𝑘 : 𝑎[𝑥𝑘], which describe that the variables
𝑏1, . . . , 𝑏𝑘 hold the values of 𝑎[𝑥1], . . . , 𝑎[𝑥𝑘]. The key translation
rules are as follows:

Izumi Tanaka, Ken Sakayori, Shinya Takamaeda-Yamazaki, Naoki Kobayashi

Buffer
Translation

Stream
Translation Emission

Vitis
HLS [2] Vivado [3]

Source
Program

Intermediate
Program

Target
Program

Host Code

Kernel Function
(C++) HDL

Hardware on FPGA

Our Tool

Figure 4: A High-Level Synthesis Toolchain with Our Tool

𝑥 ∈ 𝑆

Δ | Γ, 𝑎 : rarray[𝑆] ⊢ 𝑎[𝑥] ⊣ Δ | Γ, 𝑎 : rarray[𝑆 \ {𝑥}] =⇒ 𝑎[𝑥]

Δ, 𝑏 : 𝑎[𝑥] | Γ ⊢ 𝑎[𝑥] ⊣ Δ, 𝑏 : 𝑎[𝑥] | Γ =⇒ 𝑏

The first rule is for the case where 𝑎[𝑥] is read for the first time
in the source program. In this case, 𝑎[𝑥] is read also in the target
program, and 𝑥 is removed from the set of indices, so that 𝑎[𝑥]
will not be read again. The second rule is for the case where the
value of 𝑎[𝑥] is already stored in a buffer, as indicated by the buffer
environment 𝑏 : 𝑎[𝑥]. In this case, the read access 𝑎[𝑥] is replaced
by the read from buffer 𝑏. Given 𝑎[𝑥], which rule should be applied
can be determined by a type inference algorithm, whose description
is omitted in this paper due to lack of space.

3 Stream Translation
For stream translation, we introduce new linear types for arrays:
rarray[𝑥,𝑦, 𝑛] andwarray[𝑥,𝑦, 𝑛]. The type rarray[𝑥,𝑦, 𝑛] describes
a read-only array that must be accessed from index 𝑥 to 𝑦 with a
stride of 𝑛, while the type warray[𝑥,𝑦, 𝑛] describes a write-only
array that has been accessed from index 𝑥 to 𝑦 with a stride of 𝑛.
The stream translation relation is of the form Γ ⊢ 𝑒 ⊣ Γ′ { 𝑒′,
where 𝑒 and 𝑒′ are the source and target programs, and Γ and Γ′

describe type environments before and after the execution of 𝑒 . The
key translation rules are as follows:

Γ, 𝑎 : rarray[𝑥,𝑦, 𝑛] ⊢ 𝑎[𝑥] ⊣ Γ, 𝑎 : rarray[𝑥 + 𝑛,𝑦, 𝑛]
{ 𝑎strm .𝑟𝑒𝑎𝑑 ()

Γ, 𝑎 : warray[𝑥,𝑦 − 𝑛, 𝑛] ⊢ 𝑎[𝑦] := 𝑧 ⊣ Γ, 𝑎 : warray[𝑥,𝑦, 𝑛]
{ 𝑎strm .𝑤𝑟𝑖𝑡𝑒 (𝑧)

The first rule replaces an array access 𝑎[𝑥] with a stream read
𝑎strm .𝑟𝑒𝑎𝑑 (). The type rarray[𝑥,𝑦, 𝑛] of 𝑎 ensures that 𝑥 is the
index that should be read first (so that in the target program, 𝑎[𝑥] is
available at the stream head). The type of 𝑎 in the type environment
is updated to rarray[𝑥 +𝑛,𝑦, 𝑛], which ensures that the subsequent
read access to the array 𝑎 occurs at the index 𝑥 + 𝑛. In Figure 3,
the type of input is updated according to this rule before and
after the third and sixth lines. The second rule replaces an array
assignment 𝑎[𝑦] := 𝑧 with a stream write operation 𝑎strm .𝑤𝑟𝑖𝑡𝑒 (𝑧),
provided that 𝑎 has type warray[𝑥,𝑦 − 𝑛, 𝑛]. The type of 𝑎 in the
type environment is updated to warray[𝑥,𝑦, 𝑛], which expresses
that 𝑎[𝑥], 𝑎[𝑥 + 𝑛], . . . , 𝑎[𝑦] have now been written in the source

Table 1: Execution time of the kernel functions before and
after translation, along with the performance ratio. The Buf
column reports the execution time after applying only buffer
translation. The performance of Merge was measured using
hand-optimized programs. (Automatic translation of such
programs is left for future work.)

Name Src[ms] Buf [ms] Str[ms] Src/Buf Src/Str
Filter 384 35.6 30.5 10.8 12.6
Filter-Dilated 422 35.6 30.5 11.9 13.8
Filter-2D 1150 36.6 31.1 31.4 37.0
Simple 35.6 35.6 30.8 1.00 1.16
Simple-Skip 71.8 71.8 30.6 1.00 2.35
MatVec-Mul 29.2 29.2 31.1 1.00 0.94
Merge 2660 2440 61.4 1.09 43.3

program, and the values of 𝑎[𝑥], 𝑎[𝑥 +𝑛], . . . , 𝑎[𝑦] are stored in the
stream 𝑎 in this order in the target program.

4 Experiments
We have implemented a prototype tool, whose overall architec-
ture is shown in Figure 4. We used AMD Kria KV260 Vision AI
Starter Kit [1] as the target FPGA platform. The host code, exe-
cuted in Jupyter Lab [5], corresponds to the non-kernel portion of
the translated program and was used to evaluate the accelerator’s
performance. Table 1 shows the execution times of the kernel func-
tions of the benchmark programs we prepared. The program Filter
is similar to the program shown in Figure 1, while Filter-Dilated
and Filter-2D are its variants. Simple doubles the value of each
element of the input array and writes the result to the output ar-
ray, while Simple-Skip processes only the even-indexed elements.
Merge combines two sorted arrays into one. The translation time
was less than a second for all programs.

Programs with multiple memory accesses and simple access
patterns, such as Filter, experienced substantial speedup through
buffer translation alone. Stream translation, however, proves par-
ticularly effective for programs with more complex memory access
patterns, such asMerge, where Vitis HLS’s "burst access" inference
does not apply.

References
[1] AMD. 2025. Kria K26 and KV260 Vision Starter Kit. https://www.amd.com/en/

products/system-on-modules/kria/k26/kv260-vision-starter-kit.html Accessed:
2025-01-06.

[2] AMD. 2025. Vitis Unified Software Platform. https://www.amd.com/en/products/
software/adaptive-socs-and-fpgas/vitis.html Accessed: 2025-01-06.

https://www.amd.com/en/products/system-on-modules/kria/k26/kv260-vision-starter-kit.html
https://www.amd.com/en/products/system-on-modules/kria/k26/kv260-vision-starter-kit.html
https://www.amd.com/en/products/software/adaptive-socs-and-fpgas/vitis.html
https://www.amd.com/en/products/software/adaptive-socs-and-fpgas/vitis.html

High-Level Synthesis with Linear Types

[3] AMD. 2025. Vivado Design Suite - Overview. https://www.amd.com/en/products/
software/adaptive-socs-and-fpgas/vivado.html Accessed: 2025-01-06.

[4] Rachit Nigam, Sachille Atapattu, Samuel Thomas, Zhijing Li, Theodore Bauer,
Yuwei Ye, Apurva Koti, Adrian Sampson, and Zhiru Zhang. 2020. Predictable
accelerator design with time-sensitive affine types. In Proceedings of the 41st
ACM SIGPLAN Conference on Programming Language Design and Implementation.
393–407.

[5] Project Jupyter. 2020. JupyterLab: An Interactive Development Environment.
https://jupyter.org Accessed: 2025-01-15.

[6] Kenshu Seto. 2018. Scalar replacement with polyhedral model. IPSJ Transactions
on System and LSI Design Methodology 11 (2018), 46–56.

[7] Kenshu Seto. 2019. Scalar Replacement with Circular Buffers. IPSJ Transactions
on System and LSI Design Methodology 12 (2019), 13–21.

https://www.amd.com/en/products/software/adaptive-socs-and-fpgas/vivado.html
https://www.amd.com/en/products/software/adaptive-socs-and-fpgas/vivado.html
https://jupyter.org

	Abstract
	1 Introduction
	2 Buffer Translation
	3 Stream Translation
	4 Experiments
	References

