
Advanced Communication Pattern Support
for Hardware Accelerators

Guillem López-Paradís12, Nazerke Turtayeva3, Guy Wilks4, Tianrui Wei5,
Vicenç Beltran1, Adrià Armejach12, Miquel Moretó12, Jonathan Balkind3

1 BSC 2 UPC 3 UC Santa Barbara 4 CMU 5 UC Berkeley

1 Problem statement
Today’s systems-on-chip (SoCs) featuremany application-specific
accelerators that offer significant performance and energy effi-
ciency benefits over general-purpose cores [1–4, 7]. However,
current design paradigms fix hardware connectivity at chip fab-
rication time, limiting SoCs’ flexibility.
Within SoCs, numerous approaches have been developed to

construct domain-specific chips. One notable example is stream-
ing protocols, such as AXI-Stream, which establish fixed topolo-
gies for interconnecting accelerators. Most SoC topologies use
point-to-point communication channels, enabling opportunities
for pipeline parallelism. Some further support limited forms of
splitting and merging. Although these facilitate accelerator-level
parallelism, they are inherently constrained by the fixed topology
established at design time.
As software stacks continue to grow in complexity, SoCs’

design-time topology limitations make application remapping
challenging, thus restricting developers. Even the state-of-the-
art software-oriented data movement mechanism for SoCs, Co-
hort [11], supports only a limited point-to-point communication
pattern. This limits the usage of accelerators in more complex
workloads where (a) more than one accelerator is needed;
(b) more than 1 producer/consumer coexist; and (c) com-
plex communication patterns that combine (a) and (b) are
used. This paper discusses the infrastructure requirements and
hardware support needed to enable flexible communication pat-
terns in heterogeneous SoCs beyond Cohort. We present our
current solutions and list open questions that we find important
to consider when building the next generation of software and
hardware stacks.

Use case with Dependency Graph. To better show the limita-
tions of traditional point-to-point topologies, Figure 1 graphically
presents the analysis of a common server application (Cholesky [9])
that could be desirable for acceleration. Figure 1a displays the
data dependency graph for a part of the application with four de-
pendent functions coloured differently. This information is taken
into account when it is parallelised through software runtimes
such as OpenMP. Figure 1b shows that many inter-function com-
munication patterns coexist in the same application. Cholesky
extensively uses Multiple-Producer-Single-Consumer (MPSC),
marked in green, often called a reduction or merge pattern. Nev-
ertheless, all communication patterns are present, making it clear
that we need to support more than typical point-to-point
communications if we want to accelerate such workloads.

2 Base Infrastructure Requirements
For applications to interact with accelerators, configuration and
data transfer are often done via special loads and stores tomemory-
mapped I/O (MMIO), Direct Memory Access (DMA) engines, or
a hybrid approach leveraging shared memory. Recent proposals

spotrf
strsm
sgemm
ssyrk

(a) Original kernel decomposition.

spsc
spmc
mpsc
mpmc

(b) Communication Patterns.

Figure 1. Cholesky Communication Pattern Analysis.
(Legend: s-single, m-multiple, c-consumer, p-producer)

focus on accelerator programmability [5, 6, 11], and standing out
from these is Cohort [11], with its Software Oriented Accelera-
tion, SOAmodel. Cohort provides an accelerator integration layer
enabling efficient hardware-software communication through
standard SPSC FIFO queues derived from existing software. These
queues are high-performance and offer a straightforward inter-
face for interaction, making them a compelling choice. However,
to accelerate applications with numerous accelerators within a
heterogeneous system, we identify two essential extra require-
ments: a) support for multiple input/output queues con-
nected to the same accelerator, and b) support for more
complex queue types such as SPMC, MPSC, and MPMC. We
must incorporate these key features to overcome the limitations
of existing frameworks.

3 New Hardware Support
Cohort has been an inspiration for interfacing accelerators, of-
fering a simple but elegant solution based on one of the most
common data structures in software: queues. We propose leverag-
ing Cohort’s infrastructure while adding the necessary support
for our requirements. By incorporating a generic MPMC queue
and enabling multiple input/output queues, we can support all
relevant communication patterns.
However, MPMC queues are known to be slower than SPSC

due to the need for atomic synchronisation. This increases the
minimum latency required for an accelerator to have an efficient

1



computation-to-communication ratio. We opt for a block-based,
lock-free bounded queue: BBQ [10] that uses MAX operations
instead of Compare-And-Swap (CAS), and leverage MAPLE [8]
to initiate the necessary atomic operations. Further, we have also
identified the need for multiple input/output software queues
connected to a single accelerator and enabled this capability in
the system.

4 Discussion
Our work proposes hardware support for diverse communication
patterns between accelerators and/or software threads to over-
come the mentioned limitations. Figure 2 shows the different pat-
terns (a,b,c,d); how an application is mapped onto an SoC, where
accelerators and CPUs coexist, enabling seamless data interleav-
ing between software threads and accelerators. We envision that
future SoCs will continue to incorporate more accelerators and
may even offer eFPGAs in some tiles to provide greater flexibility.
With this perspective, we now discuss the open challenges.

Does the order in the queues matter? In the single point-
to-point communication pattern, a SPSC FIFO can be seen as a
synchronisation point where data is serialised, ensuring the main-
tained order. However, when using any of SPMC/MPSC/MPMC,
the FIFO order is no longer guaranteed since multiple consumers
and producers are writing to the same queue, typically relying
on synchronisation mechanisms, which does not always grant
the same access pattern to consumers/producers. For example,
in an Multiple-Producer, Multiple-Consumer (MPMC) scenario,
the first entry in the queue may not necessarily be consumed by
Consumer 1 if e.g. Consumer 2 is faster at grabbing the data.

This becomes particularly relevant when multiple accelerators
execute the same kernel/function. Not all applications require
strict ordering, but for ones that do, there are different methods to
enforce it. One simple software-based approach can be to assign
ordered IDs to data elements, although at an extra space cost.

Should we add Support for OpenMP/MPI?. The SOA pro-
posal makes us question whether we should support some of
the most common software runtimes used in distributed systems.
Fundamentally, hardware-supported queues simplify the runtime
support by directly sending messages to accelerators without
extra software interaction. In this way, we facilitate easier inte-
gration with accelerators, which routinely rely on custom stacks.

Who is responsible for mapping the application to the
system architecture? A particularly challenging and interesting
debate is whether we should develop a compiler or OS that is
able to understand the system with accelerators and map the
application to the respective accelerators in an invisible way to
developers. If that is the direction to move, what should be the
minimum information and abstraction visible to the compiler or
the OS to make the decision about autonomous mapping of the
respective code to the most suitable accelerators? For example,
regular processes use Process Control Block (PCB), to save the
information about the ISA of the target hardware in addition to
other metadata. Then, should we add the list of the accelerators
that the application can be mapped into this PCB block as well?

On the other hand, if we choose to re-use NVSHMEM or NCCL
like collective libraries to program the domain-specific accelera-
tors together with GPUs, how do we want to embed heteroge-
neous set of accelerators into their mapping algorithm instead?

P0

A0

A2

A1

A3

A5

A4 P1 P2

P A0 A3

P0 A1 A4

P A2 A5

P2

P1

P

P0

PN

P1

C0

CN

C1

d) All-to-All

P0

PN

C0P1

C0

CN

P0 C1P0 C0

a) Point-to-Point c) Splitb) Merge

Figure 2. Application mapping in a heterogeneous system: (top)
Communications patterns; (bottom, left) data-flow across differ-
ent cores and accelerators; (bottom right) the communication
pattern seen in the heterogeneous system in a 4x3 tiled mesh
system where data in the system flows from Processors (P) to
Accelerators (A).

Or should we keep programmers solely responsible for coding
and mapping the program components to the respective accel-
erators on their own, as has been done in many state-of-the-art
frameworks?

What other software and hardware features do we need
to provide to accelerator designers and software developers
who are using them? Apart from flexible communication pat-
terns, runtime support, and application mapping, we must debate
with the community additional features to support accelerators.
Some of these features can be different methods of sharing the
data structures and synchronising with respect to system events,
better support for debugging and profiling for accelerators, fault
detection and mitigation, and general OS support. These ques-
tions are important for selecting the right set of hardware features
to truly enable accelerators to be first-class citizens of the system,
without inadvertently building another CPU alongside each accel-
erator. Ideally, we imagine a modular solution to plug-and-play a
respective hardware to enable a new software feature.

Do we need a new language for programming heteroge-
nous SoCs? It is been always common to build new Domain
Specific Languages (DSLs) for new behaviours, domain-specific
applications and different hardware targets. However, since dif-
ferent accelerators feature different functionalities, it has been
challenging to build even a common API for heterogeneous SoCs
before proceeding to a common programming language that can
encapsulate them all. On the other hand, it could be very elegant
to have a DSL or generally a new programming language that
is aware of the heterogeneity of the underlying hardware and
that provides sufficient abstraction to program at the accelerator
level coarse granularity. Then, the question is again about what
those features should be, how new features should be ported
with respect to each new accelerator, and what the guarantees
should be for the compiler and the runtime of this new language.
Given that the LATTE community is a unique blend of people
from both computer architecture and programming languages
background, we believe that this particular question can spur a
very interesting discussion.

2



References
[1] Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, and Vivienne Sze. Eyeriss v2: A flex-

ible accelerator for emerging deep neural networks on mobile devices. IEEE
Journal on Emerging and Selected Topics in Circuits and Systems, 9(2):292–308,
2019.

[2] William J. Dally, Yatish Turakhia, and Song Han. Domain-specific hardware
accelerators. Commun. ACM, 63(7):48–57, jun 2020.

[3] Guy Eichler, Luca Piccolboni, Davide Giri, and Luca P Carloni. Mastermind:
Many-accelerator soc architecture for real-time brain-computer interfaces.
In 2021 IEEE 39th International Conference on Computer Design (ICCD), pages
101–108. IEEE, 2021.

[4] Davide Giri, Kuan-Lin Chiu, Guy Eichler, Paolo Mantovani, and Luca P.
Carloni. Accelerator integration for open-source soc design. IEEE Micro,
41(4):8–14, 2021.

[5] Davide Giri, Paolo Mantovani, and Luca P. Carloni. Accelerators and coher-
ence: An soc perspective. IEEE Micro, 38(6):36–45, 2018.

[6] Guillem López-Paradís, Balaji Venu, Adriá Armejach, and Miquel Moretó.
Characterization of a coherent hardware accelerator framework for socs. In
Cristina Silvano, Christian Pilato, and Marc Reichenbach, editors, Embedded
Computer Systems: Architectures, Modeling, and Simulation, pages 91–106,
Cham, 2023. Springer Nature Switzerland.

[7] Amir Morad, Tomer Y. Morad, Yavits Leonid, Ran Ginosar, and Uri Weiser.
Generalized multiamdahl: Optimization of heterogeneous multi-accelerator

soc. IEEE Computer Architecture Letters, 13(1):37–40, 2014.
[8] Marcelo Orenes-Vera, Aninda Manocha, Jonathan Balkind, Fei Gao, Juan L.

Aragón, David Wentzlaff, and Margaret Martonosi. Tiny but mighty: de-
signing and realizing scalable latency tolerance for manycore socs. In
Proceedings of the 49th Annual International Symposium on Computer Archi-
tecture, ISCA ’22, page 817–830, New York, NY, USA, 2022. Association for
Computing Machinery.

[9] Isaac Sánchez Barrera, Miquel Moretó, Eduard Ayguadé, Jesús Labarta,
Mateo Valero, and Marc Casas. Reducing data movement on large shared
memory systems by exploiting computation dependencies. In Proceedings of
the 2018 International Conference on Supercomputing, ICS ’18, page 207–217,
New York, NY, USA, 2018. Association for Computing Machinery.

[10] Jiawei Wang, Diogo Behrens, Ming Fu, Lilith Oberhauser, Jonas Oberhauser,
Jitang Lei, Geng Chen, Hermann Härtig, and Haibo Chen. BBQ: A block-
based bounded queue for exchanging data and profiling. In 2022 USENIX
Annual Technical Conference (USENIX ATC 22), pages 249–262, Carlsbad,
CA, July 2022. USENIX Association.

[11] Tianrui Wei, Nazerke Turtayeva, Marcelo Orenes-Vera, Omkar Lonkar, and
Jonathan Balkind. Cohort: Software-oriented acceleration for heterogeneous
socs. In Proceedings of the 28th ACM International Conference on Architec-
tural Support for Programming Languages and Operating Systems, Volume
3, ASPLOS 2023, page 105–117, New York, NY, USA, 2023. Association for
Computing Machinery.

3


	1 Problem statement
	2 Base Infrastructure Requirements
	3 New Hardware Support
	4 Discussion
	References

