
Zaozi, Reinvent Chisel in Scala 3
Jiuyang Liu

Huazhong University of Science and
Technology

China

Ruixing Yang
Institute of Software, Chinese

Academy of Sciences
China

JiongJia Lu
Institute of Integrated Circuits, Henan

Academy Of Sciences
China

Shupei Fan
Tsinghua
China

Jianhao Ye
University of Chinese Academy of

Sciences
China

Xuecheng Zou
Institute of Integrated Circuits, Henan

Academy Of Sciences
China

ABSTRACT
Zaozi is a Scala 3-based eDSL for hardware design, directly inter-
facing with CIRCT via C-APIs to eliminate serialization overhead
and accelerate elaboration. By offloading execution to CIRCT, it
maintains a minimal JVM footprint as a lightweight type system
wrapper for MLIR. Inspired by Chisel[1], Zaozi features a plug-
gable type system and operation construction, enabling seamless
integration with MLIR dialects and diverse backends. It also decou-
ples interface and implementation generation, improving physical
design and verification workflows. While not source-compatible
with Chisel, it remains IR-compatible via CIRCT[2], ensuring in-
teroperability. This paper introduces Zaozi’s architecture, design
principles, and performance benefits.

1 INTRODUCTION
1.1 Motivation
Chisel is widely used for large-scale digital design but has several
limitations in usability, extensibility, and integration with tradi-
tional physical design and verification flows. Its type system em-
beds hardware value types within Scala but lacks clear distinctions
for hardware-specific constructs like IO, registers, and wires, re-
lying on runtime reflection for type management. It also lacks
support for user-defined type systems and operations, making fea-
tures like fixed-point arithmetic difficult to implement. Chisel’s
global mutable runtime forces full-circuit elaboration, preventing
post-elaboration linking and causing inefficiencies in large SoC de-
signs. Furthermore, its incompatibility with traditional hierarchical
design and verification methodologies complicates integration with
physical design and verification teams.

1.2 Innovation
To overcome Chisel’s limitations, Zaozi takes a different approach
to hardware description. Instead of relying on textual FIRRTL, it
directly constructs MLIR using CIRCT’s C-API, eliminating seri-
alization overhead and accelerating elaboration. It adopts a Scala
3-based typeclass, leveraging implicit patterns to allow users to

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
LATTE ’25, March 30, 2025, Rotterdam, South Holland, Netherlands
© 2025 Copyright held by the owner/author(s).

define custom type systems and extend operations seamlessly. Un-
like Chisel’s mutable runtime types, Zaozi introduces a reference-
based type system for Register, Wire, IO, and Probe, making the
Zaozi type system sound and Scala runtime immutable. Addition-
ally, Zaozi enhances physical design and verification by enforcing
parameter serialization for both declaration and implementation,
requiring explicit interface instantiation before design elaboration,
enabling independent interface generation for physical design and
verification workflows.

1.3 Contribution
Zaozi is built on extensive experience with Chisel development,
incorporating feedback from RTL engineers and physical design
teams. It reimagines hardware construction language (HCL) with
IR Construction Language (ICL) principles and leveraging MLIR’s
infrastructure in a Scala 3-based eDSL. Zaozi introduces a state-
of-the-art type system and runtime design, offering a scalable and
modular approach to hardware description. By bridging the gap
between eDSL frontends and CIRCT/MLIR, it provides a unified
framework for multiple dialects, simplifying frontend development.
These innovations position Zaozi as a forward-looking research
effort, advancing next-generation hardware eDSLs while ensuring
interoperability with Chisel via CIRCT.

2 SYSTEM DESIGN
Zaozi is designed as a reusable and hierarchical framework, lever-
aging modular libraries to maximize code reuse while providing
fine-grained components that can be utilized by external tools.

2.1 Fundamental Libraries: MLIR and CIRCT
Bindings

The core foundation of Zaozi consists of two fundamental libraries:
mlirlib and circtlib. These libraries are generated using jextract,
which converts MLIR and CIRCT C headers into Java code. Scala
3 is then used to manually wrap these Java bindings, providing a
seamless interface for circt API-calls. These bindings serve as the
fundamental bridge between Zaozi and CIRCT, enabling direct com-
munication with CIRCT without serialization and deserialization
overhead. It can also be compatible with Chisel and other tools that
wish to eliminate textual-based exchange interface. To demonstrate
the possibility, we upstreamed an experimental Chisel library in
Scala 2 that allows Chisel to directly interface with CIRCT using
this library.



LATTE ’25, March 30, 2025, Rotterdam, South Holland, Netherlands Jiuyang Liu, Ruixing Yang, JiongJia Lu, Shupei Fan, Jianhao Ye, and Xuecheng Zou

2.2 Zaozi: A Slim and Extensible eDSL for MLIR
Zaozi itself is a lightweight eDSL that borrows much of its syntax
from Chisel to ensure a familiar RTL design experience.3.3

It is composed of several key components:

2.2.1 Value Type. The Value Type wraps the C++ mlir::Type
in Scala. It provides familiar types such as UInt, SInt, Bits, Bundle,
and Vec, similar to Chisel. However, compared to Chisel:

• Zaozi maintains a minimal memory footprint in JVM, other
than the pointer to the C++ memory segment, nothing is
maintained at JVM side.

• Most APIs, including width and field count of Vec, are di-
rectly accessed by the C-API, allowing MLIR’s built-in type
inference to be reused, and eliminate any mismatch from the
zaozi and circt.

• Users can define their own types by implementing the toMlirTpe
function, which invokes the C-API and returns an arbitrary
MlirType wrapped in Scala 3.

2.2.2 Reference Type. One of the major limitations of Chisel
is the missing of Reference Type representing in Scala type sys-
tem, which is handled at the Scala runtime, leading to significant
complexity in Chisel’s Builder. Zaozi addresses this with a new
Reference Type, where each reference type encapsulates both a
mlir operation and its result. Each Reference Type is assigned with
a Scala 3 type and a Value Type as type parameter, for example,
Register[T <: ValueTpe], Wire[T <: ValueTpe], Constant[T
<: ValueTpe], and Probe[T <: ValueTpe](for verification), elim-
inating ambiguities semantic and shifts most error detection to
Scala compile-time, reducing runtime errors.

2.2.3 Scala Dynamic on Reference Type. However, a key chal-
lenge in the implementation arises after introducing the Reference
Type. Unlike a straightforward ref.someField access to Bundle
in Chisel, where someField is expected to be a member of Bundle
<: ValueTpe in zaozi. This approach does not work because it
refer to the Reference Type, and the return type must also be a
Reference Type. To address this while maintaining a clean and
intuitive design, zaozi leverages Scala macros and the Dynamic trait
to cast someField from Bundle.

2.2.4 Operations as Type Class for Value Type. Zaozi defines a
type class-based API for handling data types, allowing operators to
be attached flexibly rather than mixed into specific types. It follows
a two-level approach: operators are defined via Type Class, while
implementations are provided using the given pattern. This mix-in
paradigm enhances extensibility and flexibility, enabling users to
introduce new APIs or modify existing implementations, such as
replacing an addition operation with a commercial IP block instead
of directly generating a firrtl.add operator.

2.2.5 Builder as Contextual Function. In Chisel, hardware elabo-
ration assumes a single global circuit elaborator, maintaining the
elaboration state globally. Zaozi challenges this approach by lever-
aging contextual functions in Scala 3, ensuring that each hardware
generator is bound to its own context. This enables parallel hard-
ware elaboration, allowing multiple Module contexts to be instan-
tiated and elaborated across multiple threads before linking them

in CIRCT. This design significantly improves eDSL runtime effi-
ciency while establishing a more scalable and modular elaboration
framework in Zaozi.
Through this modular and extensible design, Zaozi establishes a
modern and scalable framework for hardware design, bridging
the gap between eDSL frontends and CIRCT while maintaining a
familiar user experience.

3 DISCUSSION
3.1 Role of Scala for eDSL
Chisel’s success in building a strong community is largely attributed
to Scala’s language features, including functional programming, a
robust type system, and an advanced garbage collector via the JVM.

However, Scala should serve solely as an eDSL rather than a build
system, compiler, or linker. Its immutable nature and JVM-based
memory overhead make it unsuitable for these roles.

Scala has limited exploration of other host languages, but when
considering its evolution as an eDSL, the focus should remain on
refining Scala rather than seeking alternatives. Just as the FIRRTL
compiler was successfully replaced byMLIR, we should also remove
functionalities that do not belong in Scala and rethink how to design
a minimal, efficient eDSL.

By clearly defining boundaries, we can delegate non-eDSL tasks
to more suitable tools, ensuring a cleaner and more maintainable
hardware design flow.

3.2 We need more eDSL in the hardware domain
We need more than just a single hardware description language;
the hardware ecosystem demands a broader range of DSLs. UVM
should be modeled and transformed into a verification DSL, while
SystemC needs to be adapted into a modeling DSL. Additionally,
bridging these DSLs is a crucial challenge that must be addressed.
The hardware industry requires these capabilities–not just Chisel.

3.3 Lesson from Chisel
Chisel, while successful, lacks elegance. We should learn from its
eDSL design challenges:

• eDSLs are not real languages - Unlike traditional lan-
guages with formal specifications, eDSLs evolve through API
changes. As Chisel adoption grew, maintaining backward
compatibility and managing releases became increasingly
difficult.

• An eDSL should be as slim as possible - Bugs can arise at
any stage: build systems, the Scala compiler, Chisel’s builder,
CIRCT compilation, RTL functionality, or EDA tools. Chisel
takes on too many responsibilities, increasing complexity
and making debugging harder. A hardware eDSL should
focus solely on frontend concerns, delegating compilation
and toolchain tasks to specialized tools.

• Don’t reliance on Scala’s advanced features - Chisel
heavily uses compiler plugins and macros, making mainte-
nance difficult and leading to long-term sustainability issues.
A cleaner approach is needed to reduce hidden complexity.



Zaozi, Reinvent Chisel in Scala 3 LATTE ’25, March 30, 2025, Rotterdam, South Holland, Netherlands

REFERENCES
[1] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman,

Rimas Avižienis, John Wawrzynek, and Krste Asanović. 2012. Chisel: constructing
hardware in a scala embedded language. In The 49th Annual Design Automation
Conference.

[2] Schuyler Eldridge, Prithayan Barua, Aliaksei Chapyzhenka, Adam Izraelevitz, Jack
Koenig, Chris Lattner, Andrew Lenharth, George Leontiev, Fabian Schuiki, Ram
Sunder, et al. 2021. MLIR as hardware compiler infrastructure. In Workshop on
Open-Source EDA Technology (WOSET).

1 // Each Geneartor is a contextural function
2 // user summon Parameter, IO from context.
3 val p = summon[GCDParameter]
4 val io = summon[Interface[GCDIO]]
5 // The Implicit Clock and Reset is set by given
6 given Ref[Clock] = io.clock
7 given Ref[Reset] = io.reset
8 // Return is a NOT UInt, but Reg[UInt], Reg <: ValueTpe
9 val x: Reg[UInt] = Reg(UInt(p.width.W))
10 val y: Reg[UInt] = RegInit(0.U(32.W))
11 val startupFlag: Reg[Bool] = RegInit(false.B)
12 val busy: Reg[Bool] = y =/= 0.U
13 io.input.ready := !busy
14 io.output.bits.z := x
15 io.output.valid := !busy & startupFlag
16 val a = x - y
17

18 // cond ? (sel, alt) is just a suger, this given is
introduced by import

19 given [R <: Referable[Bool]]: BoolApi[R] with
20 extension (ref: R)
21 def ?[Ret <: Data](
22 con: Referable[Ret], alt: Referable[Ret]
23 )(using Arena, Context, Block): Node[Ret] = ???
24

25

26 x := io.input.fire ? (
27 io.input.bits.x,
28 (x > y) ? (
29 (x - y),
30 x
31 )
32 )
33 y := io.input.fire ? (
34 io.input.bits.y,
35 (x > y) ? (
36 y,
37 (y - x)
38 )
39 )
40 startupFlag := io.input.fire ? (
41 true.B,
42 startupFlag
43 )

Listing 1: GCD code example in Zaozi


	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Innovation
	1.3 Contribution

	2 System Design
	2.1 Fundamental Libraries: MLIR and CIRCT Bindings
	2.2 Zaozi: A Slim and Extensible eDSL for MLIR

	3 Discussion
	3.1 Role of Scala for eDSL
	3.2 We need more eDSL in the hardware domain
	3.3 Lesson from Chisel

	References

