
Incremental Conversion of SVA Properties to
Synthesizable Hardware

Amelia Dobis
Princeton University

USA

Fabian Schuiki
SiFive

USA

Mae Milano
Princeton University

USA

Abstract
There is a mismatch between specification and verification
tooling for hardware. The modal logic required to correctly
specify sequential designs is difficult to interpret using the
first-order logic (FOL) supported by SMT-based verification
tools. In this work, we propose to close this gap via the design
of an Intermediate Representation (IR) and an incremental
lowering that would allow for temporal expressions to be
encoded as synthesizable hardware without the need for ex-
pensive formulae monitoring automata. By lowering these
expressions to synthesizable hardware inside of a general-
ized compiler such as CIRCT, we create a single point of
truth for these expressions, allowing them to be understood
and handled by any verification tool that supports synthe-
sizable Verilog. This will allow any of CIRCT’s frontends,
including SystemVerilog, to utilize temporal expressions in
the specification of their designs and verify them without
the need for commercial verification tools. This contributes
towards creating a fully open-source hardware verification
ecosystem.

1 Introduction
While hardware verification tooling has improved [7, 8, 11,
20], writing specifications for these tools remains an arduous
task. A fundamental disconnect is present between common
sequential designs specified in modal logics (like LTL [16]),
and the logics understood by underlying SMT-based verifi-
cation tools (usually FOL) [3, 6, 14]. Supporting LTL spec-
ifications requires an expensive and complex lowering to
synthesizable hardware through the creation of formulae-
monitoring Büchi automata [4, 5, 9, 12, 19]. Existing tools
such as Yosys [20] have supported this conversion through
a series of hard-coded special cases, focusing mainly on the
most common properties expressed using SystemVerilog As-
sertions (SVA) [1] – a sub-language of SystemVerilog that can
express temporal specifications using sequences and proper-
ties. As a result, modern high-level hardware languages have
been forced to rely on commercial tools for SystemVerilog
to be able to support temporal expressions.

We need a way to guarantee support for temporal specifica-
tions in all open-source verification tools without requiring
this repeated complex lowering to take place in every solver.

We call for a generic design for expressing and lowering tem-
poral expressions via a new intermediate representation (IR),
enabling expressive specifications and verification directly in
the language’s compiler. CIRCT [10] is an MLIR [13]-based
compiler infrastructure for hardware description and ver-
ification that was proposed as a solution to unify the dis-
jointed set of domain-specific hardware compilers into a
single generic tool. In this work, we redesign CIRCT’s ltl
dialect [17], and propose a set of lowerings to incrementally
convert these expressions into synthesizable hardware. Cru-
cially, choosing CIRCT enables this specification expressivity
in all of CIRCT’s frontends such as Chisel [2], Magma [18],
Kanagawa [15], or SystemVerilog [1]. With this proposed
IR, all of CIRCT’s frontends will be able to express temporal
specifications in a manner that is supported by all standard
open-source verification tools.

2 High-Level Overview
To demonstrate the efficacy of our IR at encoding temporal
expressions, consider the statement "if a followed by b after
one cycle followed by c after another cycle, then d will hold
followed by e after one cycle", written using SVA [1]:
((a ##1 b) ##1 c) |-> (d ##1 e)

We start by identifying the smallest sub-expressions, i.e. ex-
pressions comprised of a single operator and two operands.
In the case of our example these are (a ##1 b), (ab ##1 c),
(d ##1 e), and abc |-> de. We can then iteratively fold
these separate blocks until we are left with a single large
block. This final block can then be implemented as synthesiz-
able hardware, where delays become shift-registers, as it no
longer contains any modal logic elements. For our example,
this process is illustrated in Figure 1.

3 IR Design
The goal of the IR design is to allow for a centralized repre-
sentation of an arbitrary set of temporal expressions loosely
following the syntax of SVA properties. These typically de-
scribe sequences of events that are compared to each other
using high-level logical operators. In practice, expressions
like the one in our example represent an automata in which
each node is a logical comparison performed at a given clock
cycle. Our IR explicitly encodes this underlying structure,
while following three design principles: expressivity (should

1

Amelia Dobis, Fabian Schuiki, and Mae Milano

%de = ltl.seq {
 %d_1 = ltl.delay %d, 1 : i1
 %res = comb.and %d_1, %e : i1
 ltl.yield %res
} : !ltl.sequence<1>

(d ##1 e)

%abc = ltl.seq {
 %a_2 = ltl.delay %a, 2 : i1
 %b_1 = ltl.delay %b, 1 : i1
 %res = comb.and %a_2, %b_1, %c : i1
 ltl.yield %res
} : !ltl.sequence<2>

(a ##1 b ##1 c)

%ltl = ltl.implication %abc,%de

%ltl = ltl.seq {
 %a_3 = ltl.delay %a, 3 : i1
 %b_2 = ltl.delay %b, 2 : i1
 %c_1 = ltl.delay %c, 1 : i1
 %abc = comb.and %a_3, %b_2, %c_1 : i1
 %d_1 = ltl.delay %d, 1 : i1
 %de = comb.and %d_1, %e : i1
 %res = ltl.implication %abc,%de
 ltl.yield %res
} : !ltl.property<3>

(a ##1 b ##1 c) |-> (d ##1 e)

(a ##1 b ##1 c) |-> (d ##1 e) (abc |-> de)

Figure 1. Overview of our proposed incremental lowering from an SVA property to a synthesizable expression.

support a wide variety of temporal expressions), composi-
tionality (nested sequences should lower correctly without
additional efforts), and synthesizability (properties should
be lowered to synthesizable hardware in a straightforward
manner).

The core unit of our IR is the ltl.seq operation which en-
codes a single state in our LTL automaton with the following
signature: ltl.seq (<arguments>) <body> : <type>
The optional arguments it can take represent this operation’s
predecessor states and are used to encapsulate them into Sin-
gle Static Assignment (SSA) values that can be reasoned
about as a block. The body contains the logical comparisons
that compute the result of the sequence, expressed using the
ltl.yield operation. Finally, the type of the operation can
be an !ltl.sequence or !ltl.property and is annotated
with an integer parameter that encodes the end-to-end la-
tency of this block (in cycles). This type can then be exposed
to frontend languages as a latency hint, allowing frontend
programmers to reason directly about delays (or any other
timing properties). With this core operation, we have sat-
isfied our expressivity goal: we support arbitrary logical
relations, and can reason about them across time.

4 Lowering to Synthesizable Hardware
We now focus on our two remaining goals: compositionality
and synthesizability. Compositionality is achieved through
the use of incremental folding, which allows us to simply
merge two ltl.seq operations, as illustrated in Figure 2 –
where %ab and %abc are folded into a larger sequence. The
implementation of this folding pass occurs in three steps.
First, any delay applied to an argument of a sequence is
propagated to that argument’s inputs, e.g. %a, and %b in Fig-
ure 2, which are discovered through a DFS exploration of the
argument’s yield operand. Next, we fold any consecutive
delays applied to the same input, yielding a single delay per
input. Finally, we inline the body of the argument in its place
and update the resulting type parameter to reflect the new
end-to-end latency, as shown in Figure 2. This pass can be
applied incrementally to reduce a complex expression into
a single ltl.seq block. Finally, synthesizability is achieved
by applying our lowerings until a fixed point is reached –

%abc = ltl.seq {
...

} : !ltl.sequence<2>

(a ##1 b ##1 c)

%ab = ltl.seq {
 %a_1 = ltl.delay %a, 1 : i1
 %res = comb.and bin %a_1, %b : i1
 ltl.yield %res
} : !ltl.sequence<1>

%abc = ltl.seq (%ab) {
 %ab_1 = ltl.delay %ab, 1 : i1
 %res = comb.and bin %ab_1, %c : i1
 ltl.yield %res
} : !ltl.sequence<1>

(a ##1 b)

(ab ##1 c)

Figure 2. Folding pass resulting in %abc in Figure 1.

which happens when all of the individual sequence opera-
tions have been reduced to a single operation, as illustrated
in Figure 1. This form can then be lowered to CIRCT’s core
dialects by encoding all delays as shift-registers. To ensure
an expression is only enabled when its minimum valid cycle
count is reached, we additionally introduce a global enable
register; this minimum cycle count is encoded as the type
parameter to the final, fully-folded sequence. Integrating
this simple IR design into CIRCT enables the use of SVA
property-style expressions in any verification backend that
supports synthesizable Verilog, thus improving the overall
viability of open-source verification tools.

5 Conclusion
In this work, we propose an IR design and incremental low-
ering that allows for temporal expressions to be encoded
as synthesizable hardware without the need for expensive
formulae-monitoring automata to be created. By lowering
these expressions to synthesizable hardware inside of a gen-
eralized compiler such as CIRCT, we create a single point
of truth for these expressions, allowing them to be under-
stood and handled by any verification tool that supports
synthesizable Verilog. This will allow any of CIRCT’s fron-
tends to utilize temporal expressions in the specification of
their designs, and verify them without having to rely on
commercial verification tools. The hope is that this will con-
tribute to enabling a fully open-source hardware verification
ecosystem.

2

Incremental Conversion of SVA Properties to Synthesizable Hardware

References
[1] 2024. IEEE Standard for SystemVerilog–Unified Hardware Design,

Specification, and Verification Language. IEEE Std 1800-2023 (Revision
of IEEE Std 1800-2017) (2024), 1–1354. https://doi.org/10.1109/IEEESTD.
2024.10458102

[2] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew
Waterman, Rimas Avižienis, John Wawrzynek, and Krste Asanović.
2012. Chisel: constructing hardware in a Scala embedded language.
In Proceedings of the 49th Annual Design Automation Conference (San
Francisco, California) (DAC ’12). Association for Computing Machin-
ery, New York, NY, USA, 1216–1225. https://doi.org/10.1145/2228360.
2228584

[3] Clark W. Barrett, Aaron Stump, and Cesare Tinelli. 2010. The SMT-
LIB Standard Version 2.0. https://api.semanticscholar.org/CorpusID:
7943149

[4] Armin Biere, Keijo Heljanko, Tommi Junttila, Timo Latvala, and Viktor
Schuppan. 2006. Linear Encodings of Bounded LTL Model Checking.
Logical Methods in Computer Science Volume 2, Issue 5 (Nov. 2006).
https://doi.org/10.2168/LMCS-2(5:5)2006

[5] Jacek Cichon, Adam Czubak, and Andrzej Jasinski. 2009. Minimal
Büchi Automata for Certain Classes of LTL Formulas. In 2009 Fourth
International Conference on Dependability of Computer Systems. 17–24.
https://doi.org/10.1109/DepCoS-RELCOMEX.2009.31

[6] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT
Solver. In Proceedings of the Theory and Practice of Software, 14th
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (Budapest, Hungary) (TACAS’08/ETAPS’08).
Springer-Verlag, Berlin, Heidelberg, 337–340.

[7] Amelia Dobis. 2024. Formal Verification of Hardware using MLIR.
Master Thesis. ETH Zurich, Zurich. https://doi.org/10.3929/ethz-b-
000668906

[8] Amelia Dobis, Kevin Laeufer, Hans Jakob Damsgaard, Tjark Petersen,
Kasper Juul Hesse Rasmussen, Enrico Tolotto, Simon Thye Andersen,
Richard Lin, and Martin Schoeberl. 2023. Verification of Chisel Hard-
ware Designs with ChiselVerify. Microprocessors and Microsystems 96
(2023), 104737. https://doi.org/10.1016/j.micpro.2022.104737

[9] A. Duret-Lutz. 2011. LTL translation improvements in spot. In Proceed-
ings of the Fifth International Conference on Verification and Evaluation
of Computer and Communication Systems (Tunis, Tunisia) (VECoS’11).
BCS Learning & Development Ltd., Swindon, GBR, 72–83.

[10] Schuyler Eldridge, Prithayan Barua, Aliaksei Chapyzhenka, Adam
Izraelevitz, Jack Koenig, Chris Lattner, Andrew Lenharth, George
Leontiev, Fabian Schuiki, Ram Sunder, et al. [n. d.]. MLIR as hardware
compiler infrastructure.

[11] Martin Erhart, Fabian Schuiki, Zachary Yedidia, Bea Healy, and Tobias
Grosser. [n. d.]. Arcilator: Fast and cycle-accurate hardware simulation
in CIRCT. https://llvm.org/devmtg/2023-10/slides/techtalks/Erhart-
Arcilator-FastAndCycleAccurateHardwareSimulationInCIRCT.pdf.

[12] R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. 1996. Simple On-the-fly
Automatic Verification of Linear Temporal Logic. Springer US, Boston,
MA, 3–18. https://doi.org/10.1007/978-0-387-34892-6_1

[13] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy
Davis, Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasi-
lache, and Oleksandr Zinenko. 2021. MLIR: scaling compiler infras-
tructure for domain specific computation. In Proceedings of the 2021
IEEE/ACM International Symposium on Code Generation and Optimiza-
tion (Virtual Event, Republic of Korea) (CGO ’21). IEEE Press, 2–14.
https://doi.org/10.1109/CGO51591.2021.9370308

[14] Aina Niemetz, Mathias Preiner, Claire Wolf, and Armin Biere. 2018.
Btor2 , BtorMC and Boolector 3.0. In International Conference on Com-
puter Aided Verification. https://api.semanticscholar.org/CorpusID:
51868414

[15] Blake Pelton, Adam Sapek, Ken Eguro, Daniel Lo, Alessandro Forin,
Matt Humphrey, Jinwen Xi, David Cox, Rajas Karandikar, Johannes

de Fine Licht, Evgeny Babin, Adrian Caulfield, and Doug Burger. 2024.
Wavefront Threading Enables Effective High-Level Synthesis. Proc.
ACM Program. Lang. 8, PLDI, Article 190 (June 2024), 25 pages. https:
//doi.org/10.1145/3656420

[16] Amir Pnueli. 1977. The temporal logic of programs. In 18th Annual
Symposium on Foundations of Computer Science (sfcs 1977). 46–57.
https://doi.org/10.1109/SFCS.1977.32

[17] Fabian Schuiki and Amelia Dobis. 2024. CIRCT ltl dialect. https:
//circt.llvm.org/docs/Dialects/LTL.

[18] Lenny Truong and Pat Hanrahan. 2019. A Golden Age of Hardware
Description Languages: Applying Programming Language Techniques
to Improve Design Productivity. In 3rd Summit on Advances in Pro-
gramming Languages (SNAPL 2019).

[19] Moshe Y. Vardi. 1996. An automata-theoretic approach to linear tem-
poral logic. Springer Berlin Heidelberg, Berlin, Heidelberg, 238–266.
https://doi.org/10.1007/3-540-60915-6_6

[20] Claire Wolf. [n. d.]. Yosys Open SYnthesis Suite. https://yosyshq.net/
yosys/.

3

https://doi.org/10.1109/IEEESTD.2024.10458102
https://doi.org/10.1109/IEEESTD.2024.10458102
https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1145/2228360.2228584
https://api.semanticscholar.org/CorpusID:7943149
https://api.semanticscholar.org/CorpusID:7943149
https://doi.org/10.2168/LMCS-2(5:5)2006
https://doi.org/10.1109/DepCoS-RELCOMEX.2009.31
https://doi.org/10.3929/ethz-b-000668906
https://doi.org/10.3929/ethz-b-000668906
https://doi.org/10.1016/j.micpro.2022.104737
https://llvm.org/devmtg/2023-10/slides/techtalks/Erhart-Arcilator-FastAndCycleAccurateHardwareSimulationInCIRCT.pdf
https://llvm.org/devmtg/2023-10/slides/techtalks/Erhart-Arcilator-FastAndCycleAccurateHardwareSimulationInCIRCT.pdf
https://doi.org/10.1007/978-0-387-34892-6_1
https://doi.org/10.1109/CGO51591.2021.9370308
https://api.semanticscholar.org/CorpusID:51868414
https://api.semanticscholar.org/CorpusID:51868414
https://doi.org/10.1145/3656420
https://doi.org/10.1145/3656420
https://doi.org/10.1109/SFCS.1977.32
https://circt.llvm.org/docs/Dialects/LTL
https://circt.llvm.org/docs/Dialects/LTL
https://doi.org/10.1007/3-540-60915-6_6
https://yosyshq.net/yosys/
https://yosyshq.net/yosys/

	Abstract
	1 Introduction
	2 High-Level Overview
	3 IR Design
	4 Lowering to Synthesizable Hardware
	5 Conclusion
	References

