
Accelerator Interfacing is Like an Onion∗

Katie Lim
katielim@cs.washington.edu
University of Washington

Jonathan Balkind
jbalkind@ucsb.edu
UC Santa Barbara

ABSTRACT
Herein, we rant.

1 PROGRAMMING A NEWMACHINE FROM
SCRATCH

There is a fundamental difference in how we go about building
out infrastructure atop a CPU-centric software system versus an
accelerator-focused system. Software systems are typically built up
as layers of abstraction whereas accelerator-focused systems are
built both monolithic and bespoke.

Imagine you’re programming a new machine from scratch that
has a CPU with a shiny new ISA. You have some architectural re-
sources available to you and you want to build some abstractions.
It’s your responsibility to create those abstractions using the re-
sources that you’ve been provided and some of the first abstractions
that you’re likely to want to create include software mainstays like
stacks and functions. What begins as a calling convention quickly
morphs into a more formal ABI. This ABI allows you to support
multiple languages and abstractions that may otherwise have little
relation to each other. You quickly solidify some of your resources
as serving particular responsibilities, like keeping a stack pointer, ar-
gument registers, locals, a return address, and a return value. Soon,
your users will consider these the basic atoms of your system and
will be ossified beyond memory. These abstractions are relatively
simple though - a single function call, a single stack to push or pop,
maybe a little bit of recursion. To enable more flexibility, we need
to coordinate across function calls and data structures by building
additional abstractions atop our basic ones to enable functionality
like sequencing and synchrony and asynchrony. Eventually, we find
ourselves at the apex, coordinating calls with varying semantics,
and exposing behaviours across our abstractions to a programmer.
We’ve finally made it: The application programmer interface (API).

Now imagine you’re programming a new machine from scratch.
Except it’s hardware made of accelerators. What is this bundle of
wires I’m being given? Just when and how is data meant to flow
again? Why does everything need to use AXI which only lets us
do loads, stores, and maybe some atomics? Why are we attached to
PCIe which only lets us do loads, stores, and maybe some atomics?
What is the difference between CXL and PCIe? Where am I? When
did I start writing this hardware design anyway? Did someone
mention an abstraction?

Now imagine you’re programming a new machine from scratch
that is going to be all (or mostly) hardware accelerators. Do we have
an abstraction stack like in software? We, too, can have resources:
Maybe they’re wires, registers, memories; most commonly for our
purposes they are the ports on our modules. Upon these, we need
∗“Onions have layers.” - Shrek

LATTE ’25, March 30, 2025, Rotterdam, NL

to establish our calling convention or ABI: The first step here is
timing details. We can, implicitly or explicitly, have tight timing
requirements, like an initiation interval as often used in HLS or
for DSPs, or more elegantly as expressed with a timeline type a la
Filament. We can alternatively express timing more abstractly via
handshakes like latency-insensitive interfaces. Here, we begin to
be able to see equivalences to the calling convention or ABI that
describe how data is communicated over physical resources. This
is roughly the level at which we define interfaces like AXI. Likely
PCIe and CXL too, based on most uses thereof. But how can we
continue from here?

Imagine you’re still programming a new machine from scratch.
You’ve got a wonderful new hardware ABI - you maybe even have
the ability to do data movement via a protocol like AXI or PCIe or
CXL. What kinds of features are you likely to build on top? From
here, you can probably build functions or streams that give semantic
information to data on the wire or mechanisms like memcpy. Many
projects have stopped here and exposed this level of abstraction
in such a manner to software. The programmer can call a magical
function inside their application, at which time an unknown li-
brary or driver or other contrived mechanism will move their bytes
through the ether and provide functionality resembling a function.
Similarly, this level can be exposed from one accelerator to another,
but this relies on a variety of guarantees and ecosystem-specific
conventions to keep straight, stymieing our ability to plug and play
across languages and systems in the manner we do from software
with features like foreign function interfaces.

Now imagine you’re programming a new machine from scratch.
Well, this time it’s not so from scratch. You’ve got some lovely
components written by a far-off collaborator who likes that one
HDL you never wanted to read code in. But they told you that
they’re using common interfaces that they call a function or a
stream or a DMA. You have to coordinate the use of these and
incorporate higher-level semantic information. This is beginning
to smell like an API, but at times it remains as bare as a function
call itself, monomorphised in its types and lacking depth. This
is roughly where we find ourselves today: AXI conventions that
we call functions but which are just wires and latency-insensitive
interfaces in a trench coat. Or PCIe-exposing drivers bundled in
half-abstracted libraries requiring a kernel rebuild.

The API that specifies the coordination of components still eludes
us and we lack the formalism or taxonomy to differentiate between
these layers in a deep way. We are left with an onion or a parfait or
something else that looks remarkably similar at each layer while it
tries to convince us that its abstraction exists. In software, we can
lie with types and convince ourselves of the abstraction, but down
here in hardware, all complexity is laid bare as wires and gates and
registers and time.



LATTE ’25, March 30, 2025, Rotterdam, NL Lim and Balkind

Physical Resources (RTL, wires)

Timing (val/rdy)

Data movement (PCIe, AXI)

App-level interface semantics (function, stream)

App-level coordination semantics (API)

Figure 1: A possible parfait of hardware interaction layers

2 WHY DOWE CARE?
The monolithic nature of how we develop hardware makes it diffi-
cult to develop and express intra and inter-accelerator interactions
accurately. Names of protocols and interfaces may be unhelpfully
or erroneously broad, leading to everyone "Tower of Babel"-ing
at each other. An example of a name that is unhelpfully broad is
PCIe. PCIe is actually a standard that covers everything from the
physical signaling on wires all the way up to how addressing and
routing is done for devices attached to a PCIe bus. This broadness
becomes an issue when we bring in CXL, which runs “over” PCIe.
What does it mean to run over PCIe? Does it use just the physical
layer? Or is it using PCIe addressing too? By not recognizing that
PCIe actually refers to several layers, it is difficult to ascertain what
CXL is actually doing.

AXI is also often used erroneously broadly. We (your entertain-
ers) have heard “AXI transaction” used to refer to everything from
wires, to bursts, all the way to a “function invocation”. However,
AXI transaction is not adequate to capture the full details of a func-
tion invocation. Information about what data is passed over the
AXI bus and in what format is all necessary semantic information.
Instead of in software where this semantic information is often
conveyed via types, AXI provides no specification of how to convey
this information. Instead, the typical approach is ”ha ha we have
kind of agreed on this sequence of bytes to be passed over the bus”.

Two half-baked representations of our thoughts on layers in
hardware are shown in Figure 1 and as follows:

• Physical resources: what are the wires and the ports and
memory?

• Timing: when should signals take certain values?
• Data movement: addresses, bytes, reads, and writes
• App-level interface semantics: I’m a function! (What does
the data on the wire mean)

• App-level coordination semantics: API (how do we coordi-
nate the system)

3 NETWORKS ON CHIP
Network protocols give us structure and formalism that we can
leverage. We know that the data which comes first is a header and
belongs to the outermost layer of protocols that we might care
about right now. Whatever is in the payload can be worried about

later. Perhaps network protocols can give us some of the formalism
and naming that we actually need for these other purposes. And
if we can re-cast these other layers and behaviours in networking
terms, we can begin to understand them and name them better?
That is, AXI is itself a protocol, and we can in many cases carry it
over another protocol (some of us have unfortunately seen 1-bit
AXI over SPI or some other cursed arrangement). Upon networks,
we built RPCs and API concepts and much more. While we didn’t
set out to argue for NoCs, perhaps there is something more general
to learn from them.

Protocols also show us a similar set of Ouroboros-style layer
mangling. IP-in-IP is common, and generic routing encapsulation
(GRE) can carry any layer inside another layer. Why is this useful?
Well, we need a stack to think of some things as being more or
less abstract. We also get explicit indication of whether something
belongs to a lower or upper layer and require the recipient to
process the messages accordingly, including encapsulation or de-
encapsulation.

4 TYPES AND ABSTRACTIONS
To advance toward the hardware systems programming language
equivalent to Rust, we must consider how types and abstractions
can be built and checked in a deeper way than we have yet man-
aged. Given that Rust took several decades of core programming
languages research before it became conceivable, we probably ought
to build a few more languages and tools before claiming to embark
on a simmilar endeavour. One could argue that SystemVerilog inter-
faces and structs give us the most basic naming mechanism upon
which other abstractions could be built, however SystemVerilog
interfaces are near universally derided because tool implementation
is apparently too difficult when contemplating the full complexity
of the rest of the language’s specification. How can we then con-
sider the application of typed semantic information on bundles of
directed wires (input/output ports for example) to be represented
whenwe end up in the inevitable IR that SystemVerilog has become?
How can we build high-level abstractions which can simultaneously
be solidly built upon and yet also be permeable in enabling cross-
layer introspection? What does it mean for such an “abstraction”
to exist?

5 OPEN QUESTIONS
• What is an API in hardware?
• Can network protocols and NoCs lead us to sanity?
• What is an API in hardware?
• If I bless my wires or registers or timing details with the gift
of semantics, how can I express and retain those semantics?

• What is a reasonable way to enable expressing concrete
abstractions while also enabling the breaking of those ab-
stractions?


	Abstract
	1 Programming A New Machine From Scratch
	2 Why do we care?
	3 Networks on Chip
	4 Types and Abstractions
	5 Open Questions

