
Wisteria: a modern and general Structural Description Language
Victor Miquel

École Normale Supérieure
Paris, France

victor.miquel@ens.psl.eu

ABSTRACT
Wisteria is a work-in-progress description language that aims to
capture the essence of Register Transfer Level (RTL) Hardware
Description Languages (HDLs) and other similar programming
languages that rely on structural composition. This paper briefly
describes and explains core design choices in Wisteria and their
relevance for this type of language.

1 INTRODUCTION
RTL HDLs roughly fall into three categories: legacy languages such
as Verilog and VHDL, that carry many flaws but are still the de
facto industry standard, embedded languages such as Chisel[1] or
Aetherling[2], which allow to tap into the expressiveness of the
host language at the cost of slightly less natural syntax and more
language design constraints, and standalone languages such as
Filament[4] or Spade[5], that display the opposite trade-off.

The aim of Wisteria is to find the sweet spot: capturing just
enough of the structure of the languages that rely on structural
composition (including RTL HDLs, synchronous programming lan-
guages such as Lustre[3], and some Visual Programming Languages
such as Simulink or Unreal Engine’s Blueprints). The evaluation
metric would then bewhether it allows implementing the embedded
and standalone languages mentioned above as libraries in Wisteria,
while avoiding the awkwardness of embedding in a general purpose
programming language. A nice bonus effect would be that once
two such languages are implemented as libraries in this language,
it should become very easy to bring the two together as a whole if
they have complementary features.

If successful, this approach would allow to take the best of both
the embedded and standalone approaches, and hopefully even make
for a strong candidate for industry adoption if it can indeed bring
all these research ideas under a single framework.

This paper describes and explains the core design choices in the
current Wisteria iteration.

2 ORIENTED TYPES
In their most basic form, circuit/node ports have traditionally been
represented in two ways: either function-like, with input ports as
arguments and output ports as return values, or circuit-like, with
all ports as arguments, annotated with direction information.

One must additionally consider more subtle interfaces, such as
ready-valid handshakes, as it is very tempting to represent such an

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
LATTE ’25, March 30, 2025, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s).

interface as a single composite port, containing both input signals
and output signals. These ports with mixed direction (not to be
confused with inout ports) are rather natural to express in the
circuit-like style, but they require special support.

A first solution, implemented in Chisel[1] for instance (although
worded differently here), is to add orientation information to types.
There are two orientation tags: ⊥ (= this component is driven out-
side of the current context and can therefore only be read) and
⊤ (= this component must be driven exactly once in the current
context). Primitive types are tagged ⊤, and there are 3 additional
type operations beside the usual algebraic data type operations:
• out, which discards any orientation information in the type
and tags everything as ⊤.
• in (= flip ◦ out), which similarly tags everything as ⊥.
• flip, which flips any orientation tagwithin the type, turning
⊥ into ⊤ and vice versa.

A ready-valid buffer would look like this with oriented types:
struct Rv[T] { valid: out Bit, data: out T, ready: in Bit }

// or `struct Rv[T] { valid: Bit, data: out T, ready: flip Bit }`
circ buffer[T](buf_in: flip Rv[T], buf_out: Rv[T]) {...}

Because this feels somewhat unnatural, I propose to add another
layer: orientable types. In an orientable type, the type’s components
are either tagged as→ (the default) or←, as opposed to ⊥ and ⊤ in
oriented types. They come with the following additional operations:
• uni (uniform), the analog of out, tagging everything as→.
• rev (reverse), the analog of flip, switching→ and← tags.
• send, mapping an orientable type to an oriented type by
mapping→ to ⊤ and← to ⊥.
• recv = send ◦ rev. (→ to ⊥,← to ⊤)
• drive = send ◦ uni. (→ to ⊤,← to ⊤)
• read = recv ◦ uni. (→ to ⊥,← to ⊥)

Resulting in this easier to read version in proper Wisteria:
struct Rv[T] { valid: Bit, data: uni T, ready: rev Bit }

circ buffer[T](buf_in: recv Rv[T], buf_out: send Rv[T]) {...}

Although there is not enough space here to go into details, in
Wisteria local signals of orientable type T need to meet the same
requirements as ports of oriented type drive T. That is, the com-
bined effect of all the uses of the signal must add up to driving each
component of the signal exactly once. The type-checker’s main rule
regarding driving is that once a component of a signal is found to be
driven in one of the signal’s uses, it is inferred to be only read in the
other uses of the signal. An optional rule that will require further
testing is one that allows inferring that a component is driven in a
specific signal use if it is the only use left that is compatible with
that. In the presence of many polymorphic functions, this last rule
does help resolve ambiguities, but it feels somewhat fragile.

While Wisteria’s statement and expressions are not the object of
this paper, the type of expressions are (fine-grained) oriented types.



LATTE ’25, March 30, 2025, Rotterdam, Netherlands Victor Miquel

A good illustration of Wisteria’s driving-checking and inference
system is its = operator, a symmetric connection operator with
signature circ connect[T](lhs: send T, rhs: recv T). In-
deed, a = b; and b = a; are completely equivalent; if in the first
one the generic parameter is inferred to be X, in the second it will
be inferred to be rev X (given the same context).

3 CLOCKS
In legacy HDLs, signals do not have any kind of timing information
attached to them. The downstream compilation passes have to
infer timing information based on flip-flops, trying to figure out
what would make the most sense given the starting clock domain,
final clock domain, and additional timing constraints written in a
different file.

I believe that a better solution to this problem is to systemati-
cally attach timing information to signals (an idea borrowed from
Lustre[3]), at the type level, such that the situations on which
downstream passes were previously getting confused when miss-
ing appropriate timing constraints just don’t type-check, instead of
producing obscure timing error or simply being silent logic errors,
and that designs that type-check have obvious semantics.

Here are examples of what clocked types could look like:
• Bit@sys_clk: a physical wire, whose binary value is stable
and valid between each rising edge of a certain SYS_CLK
clock signal.
• Uint[8]@const: a constant unsigned integer of width 8, that
can be computed at compile-time but can also live within a
circuit.
• Nat@comptime: A heap-allocated unbounded integer, that
can only live during compilation.
• Real@continuous: An analog value that can evolve contin-
uously with no particular time constraints.

Although the examples above already showcase the diversity
of applications offered by attaching clocks to types, one further
step is required to make them shine to their full potential. That is
to have clocks themselves be @comptime values of user-definable
types. For instance, one could make it such that sys_clk + 1 is
defined and corresponds to physically the same thing as sys_clk,
but stating that for logic purposes the first tick is irrelevant.

This could allow writing the signature below, where given
Reg[clk] guarantees/requires that the clk clock supports registers
and the plus operation described above.

circ my_pipeline[clk](x: read Bit@clk, y: drive

Bit@(clk+3)) given Reg[clk] {...}

In particular, this system would allow defining clock types equiv-
alent in features to Filament[4]’s event and Aetherling[2]’s se-
quences.

4 VERIFICATION
Verification is at the heart of both hardware design and synchro-
nous languages. Furthermore, while we haven’t dived into the
type-system, the previous sections hint that this language would
allows writing Uint[a*((b*c)+1)] and Uint[a+(c*(a*b))], or
(clk+k)+3 and (clk+3)+k, and that these should be equal.

Of course it would be unreasonable to just throw everything at
SMT solvers and model-checkers wait for answers that may not
come. Instead, I propose to make extensive use of assertions, for
both type equality and specifying safety properties. The idea being
that for most compilation passes, the compiler is allowed to assume
that all assertions hold (and to produce errors if it just so happens
to hit an obvious absurdity), keeping things deterministic and fast.
Then the language toolchain would provide means to work on
proving the assertions as a separate task, at various levels of gener-
icity: in their most polymorphic forms, after monomorphisation, or
even just monitoring the remaining undecided assertions during
interactive simulation.

Implicit or global assertions could also help with generic param-
eter inference, such as when trying to infer the value of b when a
and a + b are known, a problem which commonly arises with the
extensive use of bitwidths in hardware design.

5 MORE ON THE TYPE SYSTEM
So far, the type-system has been largely glossed over. From a user-
experience perspective, I am going for a Rust-inspired system:
• Inference: Required to amortize the cost of switching from
the mostly untyped legacy languages to a strongly typed
language.
• Generics: Polymorphism is non-negotiable in a modern pro-
gramming language, and generics provide a greater sense of
control compared to the implicit type variables from the ML
family.
• Typeclasses: Revisited as relations between compile-time
values, they provide a good solution to talk about properties
and relations between types, clocks and other compile-time
values.

Together with the driving, clock and assertion systems described
in the previous sections, I believe that will make for a very robust
yet flexible type-system, able to detect a very large class of problems
during type-checking, and a large portion of the remaining issues
at verification time with the mandatory assertions required to pass
type-checking.

6 FUTUREWORK
Wisteria’s design is mostly concerned with it being a good descrip-
tion language, focusing on allowing the user to clearly and con-
cisely express their intent, as well as avoiding the need for external
template engines. It goes without saying that a good description
language is nothing without good integration with other tools in
the design workflow. This includes integration with downstream
tools: compiling to lower-level languages and tracing back to the
source code paths that fail to meet timing, and integration with up-
stream tools: providing an API to manipulate and generate circuits
using general purpose software programming languages.

Once I reach satisfactory results for synchronous RTL design, I
would like to explore how well the language scales to describing
asynchronous circuits, mixed discrete-continuous systems, and
high-level synthesis (this last one is most certainly the toughest,
but I believe that given adequate primitive types, flexible abstract
clocks and synchronization primitives, and a way to chose between
various alternative circuit implementations, it could be achievable).



Wisteria: a modern and general Structural Description Language LATTE ’25, March 30, 2025, Rotterdam, Netherlands

REFERENCES
[1] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman,

Rimas Avižienis, John Wawrzynek, and Krste Asanović. 2012. Chisel: constructing
hardware in a Scala embedded language. In Proceedings of the 49th Annual Design
Automation Conference (San Francisco, California) (DAC ’12). Association for
Computing Machinery, New York, NY, USA, 1216–1225. https://doi.org/10.1145/
2228360.2228584

[2] David Durst, Matthew Feldman, DillonHuff, David Akeley, Ross Daly, Gilbert Louis
Bernstein, Marco Patrignani, Kayvon Fatahalian, and Pat Hanrahan. 2020. Type-
directed scheduling of streaming accelerators. In Proceedings of the 41st ACM
SIGPLAN Conference on Programming Language Design and Implementation (Lon-
don, UK) (PLDI 2020). Association for Computing Machinery, New York, NY, USA,

408–422. https://doi.org/10.1145/3385412.3385983
[3] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. 1991. The synchronous

data flow programming language LUSTRE. Proc. IEEE 79, 9 (1991), 1305–1320.
https://doi.org/10.1109/5.97300

[4] Rachit Nigam, Pedro Henrique Azevedo de Amorim, and Adrian Sampson. 2023.
Modular Hardware Design with Timeline Types. Proc. ACM Program. Lang. 7,
PLDI, Article 120 (June 2023), 25 pages. https://doi.org/10.1145/3591234

[5] Frans Skarman and Oscar Gustafsson. 2022. Spade: An HDL Inspired by Modern
Software Languages. In 2022 32nd International Conference on Field-Programmable
Logic and Applications (FPL). 454–455. https://doi.org/10.1109/FPL57034.2022.
00075

https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1145/3385412.3385983
https://doi.org/10.1109/5.97300
https://doi.org/10.1145/3591234
https://doi.org/10.1109/FPL57034.2022.00075
https://doi.org/10.1109/FPL57034.2022.00075

	Abstract
	1 Introduction
	2 Oriented types
	3 Clocks
	4 Verification
	5 More on the type system
	6 Future work
	References

