
RHDL: Rust as a Hardware Description Language
Samit Basu

basu.samit@gmail.com, Fremont CA, USA

ABSTRACT
In [1], I proposed Rust as an excellent language for hardware de-
scription1. The initial attempt described in that paper was pub-
lished as RustHDL [2]. However, feedback from developers learning
RustHDL revealed several weaknesses in the design. As a result, I
have developed RHDL [3], which is a complete rewrite of RustHDL
that attempts to address these shortcomings and significantly ex-
pand the capabilities of the tool.

1 INTRODUCTION
In my prior paper, I described the various reasons that Rust makes
an excellent choice for a hardware description language. This in-
cludes strong typing, functional programming features, package
management and tooling, generics and a strong open ecosystem
[4], [5]. I also introduced RustHDL, which transforms a carefully
selected subset of Rust into synthesizable Verilog. Within a set of
implicit rules, gateware can be built using Rust code. There are, how-
ever, several shortcomings that became apparent as more engineers
began to use RustHDL. A subset of the features requested:

• Algebraic Data Types (enums with data).
• Type inference and local variable support.
• Early returns, match and if expressions.
• Timing estimation and analysis.

Adding these features has required the development of a co-compiler
that runs alongside rustc to analyze the Rust source code and gen-
erate a series of HDL-compatible representations that are succes-
sively lowered to the hardware. Both compilers work together to
ensure that the language invariants are met at all stages, and that
undefined behavior is prevented. The new framework, called RHDL
is meant to be a zero-cost abstraction, meaning that the framework
itself does not limit the performance of the design.

2 NEW FEATURES
RHDL (like its predecessor RustHDL) is embedded in the Rust
programming language, much as MyHDL is embedded in Python[6]
and Chisel is embedded in Scala [7]. As a result, all RHDL code
must be valid Rust and must meet all the requirements of the Rust
compiler. This design means an entire class of errors are eliminated,
as the language enforces correct usage of types, prevents use-before-
initialization, unassigned outputs, etc. Furthermore, by using Rust
itself, as opposed to something Rust-like or a DSL2, all the tools that
1FPGA Gateware or ASIC design
2Both Spade [8] and XLS [9] use a Rust-inspired syntax for hardware description.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
LATTE ’25, March 30, 2025, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s).

work with Rust can be used with RHDL unmodified. Of course, the
challenge with this approach is that only a very small set of Rust
code can be directly mapped to Verilog. Mapping a large subset of
Rust to hardware requires significant analysis of the underlying
code to enable the relevant transformations. A brief summary of
some of the more significant changes follows.

2.1 Algebraic Data Types
The main request from RustHDL users was support for Algebraic
Data Types. These are essentially tagged unions, where the tag is
created and tracked by the compiler, and it is guaranteed via the
type system that a value is a valid combination of tag and data. This
is an incredibly powerful feature in Rust that RustHDL was unable
to support due to lack of any direct equivalent in Verilog. RHDL
provides first class support for ADTs. For example, the following
can be used in synthesizable designs, where the language invariants
guarantee that the payload is valid if and only if the appropriate
tag is set in the discriminant of the enum:
enum MyEnum {
A, // No payload
B(b4, b6), // 4-bit and 6-bit tuple payload
C{ x: b4, y: b6, z: [b3; 3] }, // Struct payload

}

All of these variants are stored in a union that will be sized large
enough to store the largest variant together with the discriminant.
In this case, the type is 21 bits wide. See Figure 1 for an auto-
generated layout diagram of the type.

Using ADTs in Rust requires pattern matching and destructuring.
These are lowered into case expressions automatically:

let w = MyEnum::B(1, 2);
let v = match w {
MyEnum::A => bits(1),
MyEnum::B(a,..) => a,
MyEnum::C{ x,..} => x,

}

→

// Assume r0 = w, r6 = v
r1 <- r0# // r1 <- discriminant(w)
r2 <- r0#1 // r2 <- payload(w, 1)
r3 <- r2.0 // r3 <- r2.a
r4 <- r0#2 // r4 <- payload(w, 2)
r5 <- r4.x // r5 <- r4.x
r6 <- case r1 {

0 => 1, 1 => r3, 2 => r5
}

Here, the right hand side shows the intermediate form generated
by the compiler. It is a register-based, static single assignment (SSA)
series of opcodes that are later lowered into RTL and then into
Verilog. At this stage, each of the register values is strongly typed.

2.2 Type Inference and Local Variables
Rust relies heavily on type inference to make the language less
verbose. RHDL uses a type inference pass to deduce and annotate
the types of all variables in the original code. This type pass must
agree with the types inferred by rustc to avoid miscompilation.
Passes are included to ensure that all variables are typed by RHDL
and that the typing is consisting with rustc:

function(a: b4, b: b4) -> b4 {
let x = 1;
let y = (x, x + 1);
y.0 + y.1

}

→

let a: b4;
let b: b4;
let x: b4;
let y: (b4, b4);
let _return: b4;



LATTE ’25, March 30, 2025, Rotterdam, Netherlands Samit Basu

Figure 1: Autogenerated layout of MyEnum.

Type inference and type checking are also used to enforce cor-
rectness of the design. For example, in RHDL, a Signal type indicates
the clock domain it belongs to by use of a marker type parameter
(arbitrarily chosen to be a color). So, for example, Signal<b4, Red>
indicates a nibble that changes on edges in the Red clock domain,
and Signal<b4, Blue> signifies a nibble that changes in the Blue
clock domain. The color marker type distinguishes signals from
different clock domains as being different types, so that rustc will
prevent inadvertent substitution. Here is an example that fails to
compile due to an adder that crosses clock domainsm with the error
shown in Figure 2:

function(a: Signal<b4, Red>, b: Signal<b4, Blue>)
-> (Signal<b4, Red>, Signal<b4, Blue>) {

let a = a.val(); // Extract the value of a
let b = b.val(); // Extract the value of b
let a = a + b; // <--- Illegal!
(signal(a), signal(b))

}

Clock domain crossings require special constructs provided in the
RHDL core library.

Figure 2: Clock domain error message.

2.3 Expression Transformations
Many Rust constructs are not directly mappable to Verilog. For
example, in Rust, all if constructs are expressions, and can be used
in any context where a value is expected. Blocks also have values
(in addition to side effects). These are transformed into a series of
mux expressions with renaming of local variables.

let mut z = 0;
let x = if y {
z += 1;
z

} else {
z

};

→

// Assume r0 = z (at the beginning),
// l0 = 1, r1 = y
// r3 = x, r4 = z (at the end)
r2 <- r0 + l0; // z_if_y = z + 1
r3 <- r1 ? r2 : r0; // x = y ? z_if_y : z
r4 <- r1 ? r2 : r0; // z = y ? z_if_y : z

In this case, type inference will also be required as the types of all
of the variables are implicit. Similar transformations are applied for
match expressions, early returns and other flow control constructs.

2.4 Timing Estimation
A significant problem that arises in high level HDLs is the difficulty
in fixing timing closure issues3 with the generated design. This re-
sults from the very loose coupling between the design as expressed
in the HDL and the resulting low level representation that feeds
the synthesis tools. RHDL includes a simple critical timing path
estimator that can reference back to the source code, see Figure 3.
While basic, the intent is to build upon this capability to eventu-
ally include a closed loop from 3rd party tools back to the original
source code. The user can supply their own timing estimator, or
use the built-in heuristic, which counts the number of non-trivial
operations on every path (after optimization).

Figure 3: Timing path estimation in RHDL

3 INTERNALS
RustHDL [1] is a transpiler, which generates Verilog syntax that
is matched to the allowed subset of Rust that RustHDL supports,
stripping type information out of the AST, and providing small
shims to convert, e.g., match statements into Verilog case state-
ments. RHDL, on the other hand, includes a compiler that treats
Verilog like a machine-code target, lowering in steps that include:

• RHDLHardware Intermediate Form (RHIF), which is a strongly
typed, static single assignment (SSA), register-based virtual
machine instruction set.

• RTL, which is an untyped SSA register-based virtual machine
instruction set.

• Flow graph, which is a netlist representation (which may
not be directed if the design has loops).

Invoking the compiler is as trivial as adding an annotation to the
Rust source code and adding a dependency on the appropriate
packages.

4 CONCLUSION
RHDL is a significant step forward from RustHDL. It enables the use
of a more complete subset of Rust, and supports many more of the
language features that make Rust a powerful language for software
development. These features should enable RHDL to support a
wider range of hardware designs with code that is easier to write,
correct, and efficient.

3Or any issues identified in downstream processing, such as floor planning, etc.



RHDL: Rust as a Hardware Description Language LATTE ’25, March 30, 2025, Rotterdam, Netherlands

REFERENCES
[1] S. Basu, “Rust as a Hardware Description Language”, LATTE 2024, San Diego,

CA.
[2] “RustHDL - Write FPGA Firmware using Rust!”, https://rust-hdl.org/ (Accessed

Feb 1, 2024).
[3] “RHDL - Rust Hardware Description Language”, https://github.com/samitbasu/

rhdl (Accessed Jan 25, 2025).
[4] “Stack Overflow Developer Survey 2023”, https://insights.stackoverflow.com/

survey/2023 (Accessed Feb 1, 2024).
[5] “Rust - A language empowering everyone to build reliable and efficient software”,

https://rust-lang.org (Accessed Feb 1, 2024).
[6] “MyHDL - From Python to Silicon!”, https://www.myhdl.org/ (Accessed Feb 1,

2024).
[7] “Chisel - Software-defined hardware”, https://www.chisel-lang.org/ (Accessed

Feb 1, 2024).
[8] F. Skarman and O. Gustafsson, “Spade: An Expression-Based HDLWith Pipelines”,

Open Source Design Automation Conference, 2023.
[9] “XLS: Accelerated HW Synthesis”, https://google.github.io/xls/ (Accessed Feb 1,

2024).

https://rust-hdl.org/
https://github.com/samitbasu/rhdl
https://github.com/samitbasu/rhdl
https://insights.stackoverflow.com/survey/2023
https://insights.stackoverflow.com/survey/2023
https://rust-lang.org
https://www.myhdl.org/
https://www.chisel-lang.org/
https://google.github.io/xls/

	Abstract
	1 Introduction
	2 New Features
	2.1 Algebraic Data Types
	2.2 Type Inference and Local Variables
	2.3 Expression Transformations
	2.4 Timing Estimation

	3 Internals
	4 Conclusion
	References

