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Figure 1. Architecture of the Coyote v2 framework in a heterogeneous setup with a CPU and GPU.

1 Introduction
As the demand for cloud and datacenter computing grows,
traditional CPUs are reaching their performance limits. Con-
sequently, cloud providers are increasingly investing in het-
erogeneous hardware systems, including GPUs, DPUs, and
FPGAs [21]. FPGAs, in particular, are used as both applica-
tion accelerators [5, 9, 11, 16] and SmartNICs for offloading
network functions [8, 17]. In research, FPGAs have success-
fully been used to accelerate ML and database workloads [7,
14, 19], networking functions [18, 20] and cache-coherent
systems [6]. However, a common issue in these projects is
that they require extensive FPGA infrastructure; e.g., for
data movement, high-speed networking or multi-tenancy.
Existing tools and platforms do not provide the necessary
functions and abstractions, often causing developers to spend
significant time on infrastructure plumbing rather than appli-
cation development and performance tuning. As an example,
consider the base shell, AVED [1], for AMD’s most recent
and powerful FPGA, Alveo V80. While AVED facilitates data
movement and card management, it lacks support for multi-
tenancy, partial reconfiguration, and the card’s powerful
800Gbps networking hardware. This forces many projects
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to start almost from scratch and reinvent the software stack
needed to operate in a datacenter environment. As another
example, recent projects have explored the use of FPGAswith
other accelerators (e.g., GPUs [22] and smart storage [12]),
further complicating the infrastructure requirements, since
they are not supported by existing shells. Through our exten-
sive experience with Coyote v1 [15], we have often encoun-
tered similar pitfalls, leading to application-specific patches
that were not reusable. In this paper we identify a number
of requirements for future FPGA shells and describe Coyote
v21, our first step towards a unified FPGA platform for cloud
and datacenter acceleration, providing support similar to a
conventional OS on a CPU.

2 Coyote v2
We identify four key requirements an open-source FPGA
shell should include. Alongside them, we also explain the
approach taken in Coyote v2.

Transparent and generic user interface: The primary
purpose of an FPGA shell should be able to facilitate applica-
tion deployment and data movement. Therefore, each user
should have a clear and easy-to-use interface on both the
hardware- and software-level. On the hardware side, this
interface can be thought of as an application binary inter-
face (ABI), exposing a set of interfaces for data, control, and
interrupt signals. Moreover, with the improvements in FPGA
programming, the hardware interface should accommodate
both hardware description languages (Verilog/VHDL) and
High-Level Synthesis (HLS) kernels. On the software side,
the interface should transparently enable users to move data
between memories, devices, and the network, launch the
1GitHub: https://github.com/fpgasystems/Coyote
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aforementioned kernel, and wait for results. Coyote v2
approach: On the hardware, Coyote v2 is built around
industry-standard AXI4 streams, which are used for local
and remote reads/writes, shell control, and user interrupts.
By using standard AXI4 streams, users are free to choose
between HLS and RTL. On the software side, Coyote v2 in-
cludes a user-facing API written in C++ which facilitates
data movement, networking, and reconfiguration. Under the
hood, the software issues calls to a custom device driver
which communicates with the FPGA through PCIe and an
XDMA core (see Figure 1).

Services and libraries: Standard software libraries signif-
icantly simplify development. As an example, GPU vendors
provide a rich set of libraries for networking, mathematics,
and memory management. However, on FPGAs, these so-
called “libaries” are sparse and rarely portable from project
to project. A more complete FPGA shell should include sup-
port for TCP/IP and RDMA networks, DDR/HBM memory
controllers, and offer the possibility to include additional
hardware modules with minimum overhead. Coyote v2 ap-
proach: Thanks to its generic interfaces andmodular design,
we easily equipped Coyote v2 with our own, widely used
and open-source, 100G network stack [4], supporting both
TCP/IP and RDMA. To capture the full benefits of HBM, Coy-
ote v2 automatically instantiates the necessary controllers
and interfaces. Furthermore, the users are free to choose the
number of memory channels, providing a trade-off between
throughput and logic density. With the current shift to dis-
tributed and heterogeneous computing, recent contributions
successfully extended Coyote with collective communica-
tions [10] and a DMA engine between FPGAs and GPUs [3].
Multi-tenancy and multi-threading: Recent FPGAs

often exceed the requirements of a single application. For
example, the recent AMD Alveo V80 is equipped with over
2.5 million logic elements (LUTs), 32 GB HBM supporting
800 GBps bandwidth and networking hardware supporting
up to 100 GBps bandwidth, which is unlikely to be saturated
by one application. In addition, given the shared nature of
infrastructure in a cloud environment, it is imperative to sup-
port multi-tenancy. Furthermore, due to the deeply pipelined
nature of FPGAs, a single hardware application can process
multiple inputs simultaneously, which should be appropri-
ately exposed to the user-space. Coyote v2 approach: As
illustrated in Figure 1, the FPGA is spatially partitioned into
multiple virtual FPGAs (vFPGAs). Each vFPGA represents
a single user application with interfaces to the host and
card memory, networking stacks, interrupts etc. Further-
more, Coyote adopts a virtual memory model, ensuring data
separation between vFPGAs. To ensure fair access to the
aforementioned services (networking, memory etc.), Coy-
ote v2 also includes arbiters and schedulers, ensuring no
vFPGA is using up all the bandwidth for itself. Within the
user-facing software stack, a core component is the Coyote
thread (cThread), which is associated with a specific vFPGA.
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Figure 2. Throughput scaling with the number of cThreads
for AES encryption using the same vFPGA.

However, due to the pipelined nature of FPGA applications,
it is possible to assign multiple cThreads to the same vFPGA,
thus improving throughput (see example in Figure 2).

Dynamic reconfiguration: A key concept in cloud com-
puting is the ability to reuse the same hardware for different
users and applications. As such, an FPGA shell should in-
clude the ability to reconfigure, at run-time, both the user
applications (vFPGAs) and services (e.g., the network stack
or the memory controller). Coyote v2 approach: Coyote
v2 enables the reconfiguration of both the services (e.g. from
RDMA to TCP/IP) and vFPGAs. The only fixed component
in Coyote is the static layer, responsible for interactions with
the host. By leveraging the Internal Configuration Access
Port (ICAP) [2] and linking against the same static layer,
Coyote v2 is able to load partial bitstreams into the FPGA
configuration memory. On the host side, the reconfiguration
is handled by the driver, which on one hand interacts with
the ICAP through the XDMA, and on the other hand, exposes
a set of ioctl calls to the user-facing software stack.

3 Future work
In future work, we plan to extend Coyote in multiple ways.
First, we plan to investigate the integration and suitable
abstractions with other hardware, such as SmartSSDs. Sec-
ond, we plan to investigate suitable fallback mechanisms for
packet processing on the host when the target protocol is
not implemented on the FPGA to enable full SmartNIC capa-
bilities. Finally, while previous work has shown the ability
to run Coyote on a number of platforms (Alveo U55C, U280,
U250, Enzian [6]), we also plan to investigate the portability
to more recent FPGAs, such as the Alveo V80.
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