
Coyote v2: Towards Open-Source, Reusable
Infrastructure and Abstractions for FPGAs

Benjamin Ramhorst∗
benjamin.ramhorst@inf.ethz.ch
Systems Group, ETH Zurich

Zurich, Switzerland

Maximilian J. Heer∗
maximilian.heer@inf.ethz.ch
Systems Group, ETH Zurich

Zurich, Switzerland

Gustavo Alonso
alonso@inf.ethz.ch

Systems Group, ETH Zurich
Zurich, Switzerland

CPU

Coyote Driver

Coyote Systems Software

Coyote Thread
App #0

Coyote Thread
App #1

Coyote Thread
App #N

...

GPU

Buffer Buffer

Kernel Kernel

PCIe-
interconnect

DMA from FPGA to
CPU & GPU

FPGA Static Layer: Shell Management

XDMA core

Dynamic Layer: Services

Command Parsing
Arbitration / 

Crediting

vFPGA #0

TLB

vFPGA #1

TLB

vFPGA #N

TLB

…R
ec

on
fig

ur
ab

le
at

 r
un

tim
e

Application-level multi-tenancy with shared services

HBM

100G 
networking: 
RoCE v2 & 

TCP

Common interface
for application
development

User Logic

WRWR

RemoteLocal

Data: 512-bit AXI Stream

IntrptsCmd

Control: 128-bit
AXI Stream

Figure 1. Architecture of the Coyote v2 framework in a heterogeneous setup with a CPU and GPU.

1 Introduction
As the demand for cloud and datacenter computing grows,
traditional CPUs are reaching their performance limits. Con-
sequently, cloud providers are increasingly investing in het-
erogeneous hardware systems, including GPUs, DPUs, and
FPGAs [21]. FPGAs, in particular, are used as both applica-
tion accelerators [5, 9, 11, 16] and SmartNICs for offloading
network functions [8, 17]. In research, FPGAs have success-
fully been used to accelerate ML and database workloads [7,
14, 19], networking functions [18, 20] and cache-coherent
systems [6]. However, a common issue in these projects is
that they require extensive FPGA infrastructure; e.g., for
data movement, high-speed networking or multi-tenancy.
Existing tools and platforms do not provide the necessary
functions and abstractions, often causing developers to spend
significant time on infrastructure plumbing rather than appli-
cation development and performance tuning. As an example,
consider the base shell, AVED [1], for AMD’s most recent
and powerful FPGA, Alveo V80. While AVED facilitates data
movement and card management, it lacks support for multi-
tenancy, partial reconfiguration, and the card’s powerful
800Gbps networking hardware. This forces many projects

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
LATTE ’25, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s).

to start almost from scratch and reinvent the software stack
needed to operate in a datacenter environment. As another
example, recent projects have explored the use of FPGAswith
other accelerators (e.g., GPUs [22] and smart storage [12]),
further complicating the infrastructure requirements, since
they are not supported by existing shells. Through our exten-
sive experience with Coyote v1 [15], we have often encoun-
tered similar pitfalls, leading to application-specific patches
that were not reusable. In this paper we identify a number
of requirements for future FPGA shells and describe Coyote
v21, our first step towards a unified FPGA platform for cloud
and datacenter acceleration, providing support similar to a
conventional OS on a CPU.

2 Coyote v2
We identify four key requirements an open-source FPGA
shell should include. Alongside them, we also explain the
approach taken in Coyote v2.

Transparent and generic user interface: The primary
purpose of an FPGA shell should be able to facilitate applica-
tion deployment and data movement. Therefore, each user
should have a clear and easy-to-use interface on both the
hardware- and software-level. On the hardware side, this
interface can be thought of as an application binary inter-
face (ABI), exposing a set of interfaces for data, control, and
interrupt signals. Moreover, with the improvements in FPGA
programming, the hardware interface should accommodate
both hardware description languages (Verilog/VHDL) and
High-Level Synthesis (HLS) kernels. On the software side,
the interface should transparently enable users to move data
between memories, devices, and the network, launch the
1GitHub: https://github.com/fpgasystems/Coyote



LATTE ’25, March 30, 2025, Rotterdam, Netherlands Benjamin Ramhorst, Maximilian J. Heer, and Gustavo Alonso

aforementioned kernel, and wait for results. Coyote v2
approach: On the hardware, Coyote v2 is built around
industry-standard AXI4 streams, which are used for local
and remote reads/writes, shell control, and user interrupts.
By using standard AXI4 streams, users are free to choose
between HLS and RTL. On the software side, Coyote v2 in-
cludes a user-facing API written in C++ which facilitates
data movement, networking, and reconfiguration. Under the
hood, the software issues calls to a custom device driver
which communicates with the FPGA through PCIe and an
XDMA core (see Figure 1).

Services and libraries: Standard software libraries signif-
icantly simplify development. As an example, GPU vendors
provide a rich set of libraries for networking, mathematics,
and memory management. However, on FPGAs, these so-
called “libaries” are sparse and rarely portable from project
to project. A more complete FPGA shell should include sup-
port for TCP/IP and RDMA networks, DDR/HBM memory
controllers, and offer the possibility to include additional
hardware modules with minimum overhead. Coyote v2 ap-
proach: Thanks to its generic interfaces andmodular design,
we easily equipped Coyote v2 with our own, widely used
and open-source, 100G network stack [4], supporting both
TCP/IP and RDMA. To capture the full benefits of HBM, Coy-
ote v2 automatically instantiates the necessary controllers
and interfaces. Furthermore, the users are free to choose the
number of memory channels, providing a trade-off between
throughput and logic density. With the current shift to dis-
tributed and heterogeneous computing, recent contributions
successfully extended Coyote with collective communica-
tions [10] and a DMA engine between FPGAs and GPUs [3].
Multi-tenancy and multi-threading: Recent FPGAs

often exceed the requirements of a single application. For
example, the recent AMD Alveo V80 is equipped with over
2.5 million logic elements (LUTs), 32 GB HBM supporting
800 GBps bandwidth and networking hardware supporting
up to 100 GBps bandwidth, which is unlikely to be saturated
by one application. In addition, given the shared nature of
infrastructure in a cloud environment, it is imperative to sup-
port multi-tenancy. Furthermore, due to the deeply pipelined
nature of FPGAs, a single hardware application can process
multiple inputs simultaneously, which should be appropri-
ately exposed to the user-space. Coyote v2 approach: As
illustrated in Figure 1, the FPGA is spatially partitioned into
multiple virtual FPGAs (vFPGAs). Each vFPGA represents
a single user application with interfaces to the host and
card memory, networking stacks, interrupts etc. Further-
more, Coyote adopts a virtual memory model, ensuring data
separation between vFPGAs. To ensure fair access to the
aforementioned services (networking, memory etc.), Coy-
ote v2 also includes arbiters and schedulers, ensuring no
vFPGA is using up all the bandwidth for itself. Within the
user-facing software stack, a core component is the Coyote
thread (cThread), which is associated with a specific vFPGA.

0 50 100 150 200 250 300 350 400 450

1

2

4

Throughput [MB/s]

cT
hr

ea
ds

Multithreading AES CBC Encryption

Figure 2. Throughput scaling with the number of cThreads
for AES encryption using the same vFPGA.

However, due to the pipelined nature of FPGA applications,
it is possible to assign multiple cThreads to the same vFPGA,
thus improving throughput (see example in Figure 2).

Dynamic reconfiguration: A key concept in cloud com-
puting is the ability to reuse the same hardware for different
users and applications. As such, an FPGA shell should in-
clude the ability to reconfigure, at run-time, both the user
applications (vFPGAs) and services (e.g., the network stack
or the memory controller). Coyote v2 approach: Coyote
v2 enables the reconfiguration of both the services (e.g. from
RDMA to TCP/IP) and vFPGAs. The only fixed component
in Coyote is the static layer, responsible for interactions with
the host. By leveraging the Internal Configuration Access
Port (ICAP) [2] and linking against the same static layer,
Coyote v2 is able to load partial bitstreams into the FPGA
configuration memory. On the host side, the reconfiguration
is handled by the driver, which on one hand interacts with
the ICAP through the XDMA, and on the other hand, exposes
a set of ioctl calls to the user-facing software stack.

3 Future work
In future work, we plan to extend Coyote in multiple ways.
First, we plan to investigate the integration and suitable
abstractions with other hardware, such as SmartSSDs. Sec-
ond, we plan to investigate suitable fallback mechanisms for
packet processing on the host when the target protocol is
not implemented on the FPGA to enable full SmartNIC capa-
bilities. Finally, while previous work has shown the ability
to run Coyote on a number of platforms (Alveo U55C, U280,
U250, Enzian [6]), we also plan to investigate the portability
to more recent FPGAs, such as the Alveo V80.

Acknowledgments
We would like to thank AMD for their continuous support in
the development of Coyote and the donation of the Hetero-
geneous Accelerated Compute Cluster (HACC) which was
used for Coyote v2 development and testing. We would like
to especially thank Dario Korolija, whose dissertation [13]
formed the basis for the development of Coyote v2.



Coyote v2: Towards Open-Source, Reusable Infrastructure and Abstractions for FPGAs LATTE ’25, March 30, 2025, Rotterdam, Netherlands

References
[1] AMD. 2023. AMD Alveo Versal Example Design (AVED) Documen-

tation — xilinx.github.io. https://xilinx.github.io/AVED/. [Accessed
27-01-2025]. (2023).

[2] AMD. 2012. AXI Hardware ICAP — xilinx.com. https://www.xilinx
.com/products/intellectual-property/axi_hwicap.html. [Accessed
27-01-2025]. (2012).

[3] AMD. 2024. GitHub - Xilinx/ACCL at P2P — github.com. https://git
hub.com/Xilinx/ACCL/tree/P2P. [Accessed 30-01-2025]. (2024).

[4] Systems Group at ETH Zurich. 2016. GitHub - fpgasystems/fpga-
network-stack: Scalable Network Stack for FPGAs (TCP/IP, RoCEv2)
— github.com. https://github.com/fpgasystems/fpga-network-stack.
[Accessed 27-01-2025]. (2016).

[5] Eric S. Chung, Jeremy Fowers, Kalin Ovtcharov, et al. 2018. Serving
dnns in real time at datacenter scale with project brainwave. IEEE
Micro, 38, 2, 8–20. doi:10.1109/MM.2018.022071131.

[6] David A. Cock, Abishek Ramdas, Daniel Schwyn, et al. 2022. Enzian:
an open, general, CPU/FPGA platform for systems software research.
In ASPLOS ’22: 27th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Lau-
sanne, Switzerland, 28 February 2022 - 4 March 2022. Babak Falsafi,
Michael Ferdman, Shan Lu, et al., (Eds.) ACM, 434–451. doi:10.1145
/3503222.3507742.

[7] Jonas Dann, Daniel Ritter, and Holger Fröning. 2023. Non-relational
databases on fpgas: survey, design decisions, challenges. ACM Com-
put. Surv., 55, 11, 225:1–225:37. doi:10.1145/3568990.

[8] Daniel Firestone, Andrew Putnam, Sambrama Mundkur, et al. 2018.
Azure accelerated networking: smartnics in the public cloud. In 15th
USENIX Symposium on Networked Systems Design and Implementa-
tion, NSDI 2018, Renton, WA, USA, April 9-11, 2018. Sujata Banerjee
and Srinivasan Seshan, (Eds.) USENIX Association, 51–66. https://w
ww.usenix.org/conference/nsdi18/presentation/firestone.

[9] Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, et al. 2018.
A configurable cloud-scale DNN processor for real-time AI. In 45th
ACM/IEEE Annual International Symposium on Computer Architecture,
ISCA 2018, Los Angeles, CA, USA, June 1-6, 2018. Murali Annavaram,
Timothy Mark Pinkston, and Babak Falsafi, (Eds.) IEEE Computer
Society, 1–14. doi:10.1109/ISCA.2018.00012.

[10] Zhenhao He, Dario Korolija, Yu Zhu, et al. 2024. ACCL+: an fpga-
based collective engine for distributed applications. In 18th USENIX
Symposium on Operating Systems Design and Implementation, OSDI
2024, Santa Clara, CA, USA, July 10-12, 2024. Ada Gavrilovska and
Douglas B. Terry, (Eds.) USENIX Association, 211–231. https://www
.usenix.org/conference/osdi24/presentation/he.

[11] Amazon Web Services Inc. 2024. Amazon EC2 F1 Instances. [Ac-
cessed 16-03-2024]. (2024). https://aws.amazon.com/ec2/instance-ty
pes/f1/?nc1=h_ls.

[12] Hongsun Jang, Jaeyong Song, Jaewon Jung, et al. 2024. Smart-infinity:
fast large language model training using near-storage processing on
a real system. In IEEE International Symposium on High-Performance
Computer Architecture, HPCA 2024, Edinburgh, United Kingdom,March
2-6, 2024. IEEE, 345–360. doi:10.1109/HPCA57654.2024.00034.

[13] Dario Korolija. 2024. Abstractions for modern heterogeneous sys-
tems. (2024). doi:10.3929/ETHZ-B-000671565.

[14] Dario Korolija, Dimitrios Koutsoukos, Kimberly Keeton, et al. 2022.
Farview: disaggregated memory with operator off-loading for data-
base engines. In 12th Conference on Innovative Data Systems Research,
CIDR 2022, Chaminade, CA, USA, January 9-12, 2022. www.cidrdb.org.
https://www.cidrdb.org/cidr2022/papers/p11-korolija.pdf.

[15] Dario Korolija, Timothy Roscoe, and Gustavo Alonso. 2020. Do OS
abstractions make sense on fpgas? In 14th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2020, Virtual
Event, November 4-6, 2020. USENIX Association, 991–1010. https://w
ww.usenix.org/conference/osdi20/presentation/roscoe.

[16] Miriam Leeser, Suranga Handagala, Michael Zink, et al. 2021. Fpgas
in the cloud. Comput. Sci. Eng., 23, 6, 72–76. doi:10.1109/MCSE.2021
.3127288.

[17] Matt McInnes, Melissa Hollingshed, Cynthia Nottingham, et al. 2024.
Overview of Azure Boost — learn.microsoft.com. https://learn.micro
soft.com/en-us/azure/azure-boost/overview. [Accessed 29-01-2025].
(2024).

[18] Mario Ruiz, David Sidler, Gustavo Sutter, et al. 2019. Limago: an
fpga-based open-source 100 gbe TCP/IP stack. In 29th International
Conference on Field Programmable Logic and Applications, FPL 2019,
Barcelona, Spain, September 8-12, 2019. Ioannis Sourdis, Christos-
Savvas Bouganis, Carlos Álvarez, et al., (Eds.) IEEE, 286–292. doi:10
.1109/FPL.2019.00053.

[19] Ahmad Shawahna, Sadiq M. Sait, and Aiman El-Maleh. 2019. Fpga-
based accelerators of deep learning networks for learning and classi-
fication: A review. IEEE Access, 7, 7823–7859. doi:10.1109/ACCESS.2
018.2890150.

[20] David Sidler, Zeke Wang, Monica Chiosa, et al. 2020. Strom: smart
remote memory. In EuroSys ’20: Fifteenth EuroSys Conference 2020,
Heraklion, Greece, April 27-30, 2020. Angelos Bilas, Kostas Magoutis,
Evangelos P. Markatos, et al., (Eds.) ACM, 29:1–29:16. doi:10.1145/33
42195.3387519.

[21] Neil C. Thompson and Svenja Spanuth. 2021. The decline of comput-
ers as a general purpose technology. Commun. ACM, 64, 3, 64–72.
doi:10.1145/3430936.

[22] ZekeWang, Hongjing Huang, Jie Zhang, et al. 2022. Fpganic: an fpga-
based versatile 100gb smartnic for gpus. In Proceedings of the 2022
USENIX Annual Technical Conference, USENIX ATC 2022, Carlsbad,
CA, USA, July 11-13, 2022. Jiri Schindler and Noa Zilberman, (Eds.)
USENIX Association, 967–986. https://www.usenix.org/conference
/atc22/presentation/wang-zeke.

https://xilinx.github.io/AVED/
https://www.xilinx.com/products/intellectual-property/axi_hwicap.html
https://www.xilinx.com/products/intellectual-property/axi_hwicap.html
https://github.com/Xilinx/ACCL/tree/P2P
https://github.com/Xilinx/ACCL/tree/P2P
https://github.com/fpgasystems/fpga-network-stack
https://doi.org/10.1109/MM.2018.022071131
https://doi.org/10.1145/3503222.3507742
https://doi.org/10.1145/3503222.3507742
https://doi.org/10.1145/3568990
https://www.usenix.org/conference/nsdi18/presentation/firestone
https://www.usenix.org/conference/nsdi18/presentation/firestone
https://doi.org/10.1109/ISCA.2018.00012
https://www.usenix.org/conference/osdi24/presentation/he
https://www.usenix.org/conference/osdi24/presentation/he
https://aws.amazon.com/ec2/instance-types/f1/?nc1=h_ls
https://aws.amazon.com/ec2/instance-types/f1/?nc1=h_ls
https://doi.org/10.1109/HPCA57654.2024.00034
https://doi.org/10.3929/ETHZ-B-000671565
https://www.cidrdb.org/cidr2022/papers/p11-korolija.pdf
https://www.usenix.org/conference/osdi20/presentation/roscoe
https://www.usenix.org/conference/osdi20/presentation/roscoe
https://doi.org/10.1109/MCSE.2021.3127288
https://doi.org/10.1109/MCSE.2021.3127288
https://learn.microsoft.com/en-us/azure/azure-boost/overview
https://learn.microsoft.com/en-us/azure/azure-boost/overview
https://doi.org/10.1109/FPL.2019.00053
https://doi.org/10.1109/FPL.2019.00053
https://doi.org/10.1109/ACCESS.2018.2890150
https://doi.org/10.1109/ACCESS.2018.2890150
https://doi.org/10.1145/3342195.3387519
https://doi.org/10.1145/3342195.3387519
https://doi.org/10.1145/3430936
https://www.usenix.org/conference/atc22/presentation/wang-zeke
https://www.usenix.org/conference/atc22/presentation/wang-zeke

	1 Introduction
	2 Coyote v2
	3 Future work

