
Debugging Heterogeneous Hardware Research Experiments on a
Large-Scale Network Testbed

Alexander Wolosewicz∗, Ashish Gehani†, Vinod Yegneswaran†, Komal Thareja#, Mert Cevik#, Nik Sultana∗
∗Illinois Institute of Technology, †SRI, #RENCI

Abstract

FABRIC is a state-of-the-art, international research testbed which
last year hosted 25,000 experiments. It provides researchers with
programmable and reconfigurable hardware such as Xilinx U280
FPGA NICs and Tofino switches. Researchers can control the con-
figuration of testbed resources, but this control does not spare
researchers from laborious and long debugging workflows.

This work-in-progress paper describes our development of Crin-
kle, an API that extends FABRIC’s testbed management to enable
simpler and more intuitive debugging of testbed experiments in-
volving heterogeneous and programmable hardware. Our goal is to
provide a system that provides a network environment (especially
one that uses reconfigurable hardware) with the comfort and power
expected from software debuggers. We outline the current design
and future plans for how these resources can be made more usable
by testbed users.

1 Introduction and Background

Modern testbeds such as FABRIC [3] provide a variety of hardware
for large-scale research experiments. However, when running an
experiment on a testbed, there is often a lengthy process to debug
the experiment before one can realize actual research results. This
process is complicated by the lack of a network-wide debugger,
especially one general enough for research work.

From our own experience of using this equipment on FAB-
RIC [4, 10], from on-boarding others to use this equipment [9, 12],
and from conversations within the community, we see that the
most commonly used technique for network debugging involves
packet capture. Capturing traffic at points in the network allows
researchers to observe the effects of devices between them. The
captured traffic also reveals how a packet was transformed or why
it appeared (or did not appear) at that point. For small-scale tests,
this is often sufficient, and can be paired with logs or counters from
the network hardware (when available) for greater insight.

However, obtaining and parsing this information at scale is time-
consuming and laborious. Usually, very little code can be reused
from previous experiments, and a researcher usually has to write
their own code debugging. Further, while captures allow for some
debugging, they are passive, and read-only—analyzing them then
building and deploying a fix can be very time-consuming.

A previous LATTE paper by Jelvani et al. [6] outlined methods
for in-situ debugging of hardware to improve the development
process by allowing developers to avoid the costly compilation time
for FPGAs. Independently, we are building an API that interfaces
with network testbed APIs—specifically FABRIC’s—to accomplish
a complementary goal. As outlined by Jelvani et al., an in-situ
debugger should possess the ability to pause and restart execution,
examine and modify state, and observe the effects, and our work is
translating these to network equivalents.

Figure 1: Main elements in a FABRIC experiment.

Figure 2: Crinkle provides Monitors (which send packet

histories and receive configurations) and an Analyzer (which

processes these histories into a database).

2 Background on FABRIC

Our current prototype is built for the FABRIC testbed, using a
fork [11] of the Fablib API [1] for requesting and managing net-
works for FABRIC experiments.

FABRIC experiments are built as Slices, and can be built in
whatever configuration a user wishes—provided that the relevant
hardware is available. The hierarchy of a Slice is shown in Fig. 1.
A Slice is a collection of Nodes representing virtual machines and
servers. A Node can hold Components, which includes (smart) NICs,
GPUs, and FPGAs. These components have Interfaces which are
the endpoints of Network Services, which are abstracted Layer 2
and 3 networks that allow Nodes to appear directly connected even
if physically located across a continent. A Slice can span multiple
FABRIC sites, the physical datacenters that house the Nodes and
are present across the US and internationally. Nodes and Network
Services can be removed or added to a Slice at any time, provided
that the hardware is available.

3 Current Work and Discussion

Flexibility is a key feature of research testbeds like FABRIC—nodes
can be effectively removed or inserted at any part of the network



Wolosewicz et al.

topology. Our system Crinkle exploits this feature to add moni-
toring at any point in a topology. The user specifies a Layer 2 or
Layer 3 link to be monitored, and Crinkle abstracts the installation
of a special Node (a Monitor) to that link which all traffic crosses.
Crinkle then connects these Monitors to an Analyzer node on
an out-of-band IPv6 network, as shown in Fig. 2.

The default functioning of the Monitors in-band is to take a
packet in, append a trailer containing a unique identifier (if it does
not already exist), and then push the packet to the destination. The
trailer is appended similarly to the Redundancy Control Trailer of
the Parallel Redundancy Protocol [2]; that is, right before the L2
trailer (such as Ethernet’s FCS) and without increasing the length
fields of other headers, so that to most devices it appears as padding.
This enables Crinkle to maintain a history of individual frames
without requiring the rest of the network to explicitly support the
protocol, though certain network-wide variables such as maximum
packet size must account for the extra trailer length. We can thus
monitor any device, including physical switches or FPGAs which
may not support packet capturing. Out-of-band, the Monitors send
a short packet containing the Monitor’s ID, the packet UID, a times-
tamp of its arrival, and its header stack to the Analyzer, which
maintains a database of this information. Preliminary measure-
ments indicate this introduces an overhead of, on average, 2.75 µs
for processing and 30 µs including network overhead.

With this packet history, we supply the ability to retrieve and
query a history of network traffic from a central source without any
explicit support by the user’s experiment. The user can query by
time, location, header contents, or packet UID to see how specific
packets traversed the network, which can reveal the source of
network failures.

A research question involveswhere to place these Monitors
and what to have them monitor, and whether this decision-

making can be automated for researchers. While working on a
network testbedmeans inserting thesemonitors requires little work,
the finite nature of available resources means a user might wish to
maximize the obtainable insight from a fixed resource budget. An
ideal system would thus take this budget and information about the
network, such as topology information from FABRIC and potential
traffic patterns from the user using a query language, and place
Monitors to maximize coverage within the budget.

These abstract monitoring resources do not have to be fully
passive. We can enable the inserted nodes to modify the traffic
crossing them. For example, if a researcher notices a network node
is misconfigured, they can direct a monitoring node to compensate
for that and emit correct traffic. Besides this state modification,
Crinkle currently allows users to emit packets from Monitors,
returning the history of that packet, which makes the process of
getting probe packets to a network core and understanding how it
is processed significantly easier.

With the ability to monitor and emit packets, Crinkle could
be used to restart the execution of a network from a paused point,
allowing us to explore “resuming from a breakpoint” in network
debugging. FABRIC provides highly accurate time synchronization,
so the timestamps of packet arrivals across nodes can be used to
control emitting packets during a restart. Further, packet UIDs
mean that redundant parts of history following a breakpoint can
be removed, grabbing only the history directly before it.

3.1 Integration with Reconfigurable Hardware

To provide better debugging support for network experiments that
involve black-box, reconfigurable hardware devices, we are design-
ing a device-abstraction layer that interfaces with vendor-specific
toolchains. In turn, this interface leverages vendor-provided CLI
and API interfaces through which Crinkle can query and set
device-specific values. In turn, these values will be used to ser-
vice experiment-wide queries or changes, to provide testbed users
with an integrated and simplified debugging experience. Crinkle’s
API will be extended to support debugging multiple FPGAs and
ASICs in the live testbed (non-simulated) network environment.

3.2 Benefit to Testbed Operators

With a Slice there can be issues users encounter due to their
own misconfigurations, or that can result from the FABRIC back-
end. While traffic could be dropped on a connection due to a user-
introduced issue like incorrect MAC addressing, it would appear
identical to if there was an issue on the back-end side that meant
the link was not correctly provisioned or forwarding traffic. To the
user, in both cases it would appear traffic leaves one node, and does
not appear in packet captures on the other. Crinkle would provide
insight that allows the user to rule out their own misconfigurations,
so that they know they are dealing with a back-end issue and can
reach out to the testbed operators. This cuts down on noise; testbed
operators are a limited resource and enabling users to resolve more
issues on their own allows them to focus more on the issues they
are uniquely able to resolve.

4 Related Work

Static analyzers like HSA [7] are very powerful at finding misconfig-
urations, which are more likely to occur in testbed contexts where
the network is commonly built from scratch. However, strong as
these methods are, a static analysis cannot reveal the cause of run-
time bugs, such as from congestion or hardware or software faults.
For that reason, our work is more similar to runtime debuggers
such as Hydra [8] and ndb [5]. These generate or monitor data
while traffic is flowing and allow for live or post-hoc debugging.
The techniques used by those approaches capture runtime bugs,
and used properly can reveal misconfigurations like the static ana-
lyzers. However, a significant weakness of these published methods
is that none are hardware-agnostic; indeed, they all rely on P4 or
other programmable hardware. For a research testbed, we believe
that generality and allowing for any combination of hardware is
essential, as it allows researchers to explore unorthodox and novel
techniques. Crinkle addresses a similar problem space in isolating
bugs and rapidly prototyping solutions while being hardware- and
protocol-agnostic via the use of known machines that can serve as
proxies to unknown or black-box interfaces.

5 Conclusion

There is much work to be done to improve the usability of recon-
figurable hardware, and this can be seen on testbeds like FABRIC
where the complexity and time-scales of using reconfigurable hard-
ware toolchains meets large scale research deployments. We believe
that targeting FABRIC is a fruitful and productive endeavour to
incubate ideas that can improve the tooling for researchers, and in
doing so develop tooling that can be used in more general settings.



Debugging Heterogeneous Hardware Research Experiments on a Large-Scale Network Testbed

Acknowledgments

We thank the reviewers for their feedback. This material is based
on work supported by the National Science Foundation (NSF) un-
der Grant CNS-2346499. Any opinions, findings, conclusions, or
recommendations in this material are those of the authors and do
not necessarily reflect the views of NSF.

References

[1] [n. d.]. Fablib. https://github.com/fabric-testbed/fabrictestbed-extensions
[2] 2021. IEC 62439-3: Industrial communication networks - High availability automa-

tion networks - Part 3: Parallel Redundancy Protocol (PRP) and High-availability
Seamless Redundancy (HSR).

[3] Ilya Baldin, Anita Nikolich, James Griffioen, Indermohan Inder S Monga, Kuang-
Ching Wang, Tom Lehman, and Paul Ruth. 2019. FABRIC: A national-scale
programmable experimental network infrastructure. IEEE Internet Computing
23, 6 (2019), 38–47.

[4] Hyunsuk Bang, Chris Neely, and Nik Sultana. 2024. In-Network Remote Attesta-
tion for ScienceDMZ. https://sc24.supercomputing.org/scinet/network-research-
exhibition/accepted-nre-demos/.

[5] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, David Maziéres, and
Nick McKeown. 2012. Where is the debugger for my software-defined network?.
In Proceedings of the First Workshop on Hot Topics in Software Defined Networks
(Helsinki, Finland) (HotSDN ’12). Association for Computing Machinery, New
York, NY, USA, 55âĂŞ60. https://doi.org/10.1145/2342441.2342453

[6] Alborz Jelvani, Richard P. Martin, and Santosh Nagarakatte. 2024. A Case for In-
situ Hardware Development. https://capra.cs.cornell.edu/latte24/paper/16.pdf

[7] Peyman Kazemian, George Varghese, and Nick McKeown. 2012. Header space
analysis: static checking for networks. In Proceedings of the 9th USENIX Confer-
ence on Networked Systems Design and Implementation (San Jose, CA) (NSDI’12).
USENIX Association, USA, 9.

[8] Sundararajan Renganathan, Benny Rubin, Hyojoon Kim, Pier Luigi Ventre,
Carmelo Cascone, Daniele Moro, Charles Chan, Nick McKeown, and Nate Fos-
ter. 2023. Hydra: Effective Runtime Network Verification. In Proceedings of
the ACM SIGCOMM 2023 Conference (New York, NY, USA) (ACM SIGCOMM
’23). Association for Computing Machinery, New York, NY, USA, 182âĂŞ194.
https://doi.org/10.1145/3603269.3604856

[9] Nik Sultana. 2024. Getting Started with the ESnet SmartNIC framework on
FABRIC. http://packetfilters.cs.iit.edu/esnet-smartnic-tutorial/.

[10] Nik Sultana, Yatish Kumar, Chin Guok, James B. Kowalkowski, and Michael H.
L. S. Wang. 2024. Shape-shifting Elephants: Multi-modal Transport for Integrated
Research Infrastructure. In Proceedings of the 23rd ACMWorkshop on Hot Topics in
Networks, HOTNETS 2024, Irvine, CA, USA, November 18-19, 2024. ACM, 308–317.
https://doi.org/10.1145/3696348.3696855

[11] Alexander Woloseicz. [n. d.]. Crinkle Fablib Fork. https://github.com/
awolosewicz/fabrictestbed-extensions/tree/crinkle-dev

[12] Alexander Wolosewicz, Prajwal Somendyapanahalli Venkateshmurthy, and Nik
Sultana. 2025. Experience Report: Using the FABRIC Testbed to teach a Grad-
uate Computer Networking course. In Proceedings of the 56th ACM Technical
Symposium on Computer Science Education V. 1, SIGCSE TS 2025, Pittsburgh,
PA, USA, 26 February 2025 - 1 March 2025, Jeffrey A. Stone, Timothy T. Yuen,
Libby Shoop, Samuel A. Rebelsky, and James Prather (Eds.). ACM, 1246–1252.
https://doi.org/10.1145/3641554.3701923

https://github.com/fabric-testbed/fabrictestbed-extensions
https://sc24.supercomputing.org/scinet/network-research-exhibition/accepted-nre-demos/
https://sc24.supercomputing.org/scinet/network-research-exhibition/accepted-nre-demos/
https://doi.org/10.1145/2342441.2342453
https://capra.cs.cornell.edu/latte24/paper/16.pdf
https://doi.org/10.1145/3603269.3604856
http://packetfilters.cs.iit.edu/esnet-smartnic-tutorial/
https://doi.org/10.1145/3696348.3696855
https://github.com/awolosewicz/fabrictestbed-extensions/tree/crinkle-dev
https://github.com/awolosewicz/fabrictestbed-extensions/tree/crinkle-dev
https://doi.org/10.1145/3641554.3701923

	Abstract
	1 Introduction and Background
	2 Background on FABRIC
	3 Current Work and Discussion
	3.1 Integration with Reconfigurable Hardware
	3.2 Benefit to Testbed Operators

	4 Related Work
	5 Conclusion
	References

