
Rust-Based Domain-Specific Language for SFQ Circuit Design
Mebuki Oishi

The University of Tokyo
Japan

mebuki@is.s.u-tokyo.ac.jp

Sun Tanaka
The University of Tokyo

Japan
st@is.s.u-tokyo.ac.jp

Shinya Takamaeda-Yamazaki
The University of Tokyo

Japan
shinya@is.s.u-tokyo.ac.jp

ABSTRACT
Cell-based design of a single-flux-quantum (SFQ) digital circuit
requires input–output consistency; every output signal must be con-
sumed only once by the input of the following component, which
is a unique constraint, unlike the traditional CMOS digital circuit
design. While there are some cell libraries and simulation tools for
SFQ circuit development, they do not verify the input–output con-
sistency, and designers have significant responsibilities to ensure
it manually. Additionally, designers have to carefully manage net
names without unintended duplication and correct connectivity
among nets in a netlist for simulations.

We propose a domain-specific language (DSL) embedded in Rust
that automatically ensures the input–output consistency in the SFQ
circuit by leveraging the ownership system of Rust. Each SFQ circuit
element is represented as a function while wires are represented
as instances, and the Rust compiler verifies that multiple elements
do not share a single wire through the ownership system. Circuit
descriptions in the proposed DSL are successfully compiled into
low-level netlists for both analog and digital circuit simulations,
and the DSL provides higher productivity than the conventional
design flow.

1 INTRODUCTION
Single-flux-quantum (SFQ) circuits are superconducting circuits
operating at cryogenic temperatures. Due to their extremely high-
speed operation and low power consumption, they attract signifi-
cant interest as next-generation computing devices [1].

SFQ circuits are driven by voltage pulses unlike CMOS circuits,
which are driven by voltage levels. Each pulse corresponds to a sin-
gle magnetic flux quantum, implying it does not spontaneously split
or disappear. Thus, SFQ digital circuits must satisfy input–output
consistency, a one-to-one correspondence between inputs and out-
puts. In other words, every output signal must be consumed only
once by the input of the following component, which is a unique
constraint, unlike the traditional CMOS digital circuit design.

Another characteristic of SFQ circuits is that logic gates, such as
AND or NOT, are clock-synchronous, as well as flip-flops. Conse-
quently, while SFQ circuits can achieve extremely high clock fre-
quency through deep gate-level pipelining, it requires careful con-
sideration of how clock signals are supplied to each logic gate [2, 3].

For higher productivity in SFQ circuit development, cell-based
design [4] is preferred over full custom design using primitive cir-
cuit elements like resistors and inductors, as is done in CMOS circuit

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
LATTE ’25, March 30, 2025, Rotterdam, The Netherlands
© 2025 Copyright held by the owner/author(s).

development. However, due to the pulse-driven nature, designers
must ensure that the SFQ circuit satisfies input–output consistency.

There is an analog circuit simulator [5] tailored to SFQ circuit
evaluation, and such analog simulator requires a netlist of an SFQ
circuit described in the SPICE format as the input. However, directly
describing a netlist is a significant burden for designers because
a unique net name without unintended duplication should be as-
signed manually to each signal, and careful connectivity manage-
ment is required.

To address these problems in SFQ circuit design, we propose
a domain-specific language (DSL) embedded in Rust. Rather than
other programming languages, we specifically use Rust to leverage
its ownership system to facilitate static checking of input–output
consistency. Since designing a high-performance SFQ circuit re-
quires fine-tuning of clock timings, this DSL is designed to describe
a circuit at the gate level, close to the netlist. Moreover, the DSL con-
tributes to efficient circuit design because it can generate netlists for
both digital and analog simulation models with proper net names
automatically assigned.

2 IMPLEMENTATION AND BASIC DESIGN
The DSL is provided as a Rust crate, enabling circuit descriptions
to be written as fully valid Rust code. The primary data types are
Wire and Circuit. Methods on Circuit instantiate logic gates,
and Wire is used to connect gates. Each Wire can only be used once
by leveraging Rust’s ownership system.

The Wire struct internally holds only a single String. By wrap-
ping it in a struct, constructor calls and cloning are restricted. The
Circuit struct has a list of gate instances; when a gate function is
invoked, a new gate instance is added to this list.

Listing 1: SFQ Component Abstraction
pub struct Wire {name: String}
enum Gates {
And {name: String, a: String, b: String, clk: String, q: String},
Split {name: String, a: String, q0: String, q1: String},
...

}
impl<const N: usize, ... > Circuit<N, M, L, O, P> {
pub fn and(&mut self, a: Wire, b: Wire, clk: Wire, q: Option<&str

>) -> Wire {
let gate = Gates::And { ... };
self.gates.push(gate);
return Wire::new(...);

}
...

}

As a primary example, an SFQ-based half-adder circuit and its
DSL description are shown in Figure 1 and Listing 2, respectively.

A Circuit instance, which corresponds to a subcircuit in SPICE
and amodule in Verilog, is created by invoking the Circuit::create()
function with its input and output ports specified. At the time, Wire
instances for the inputs (a, b, and clk in Listing 2) are also created.

LATTE ’25, March 30, 2025, Rotterdam, The Netherlands Mebuki Oishi, Sun Tanaka, and Shinya Takamaeda-Yamazaki

Figure 1: Half adder circuit Figure 2: Counter-flow clocking circuit with a loop Figure 3: Parametrized delay circuit

Listing 2: DSL Description for the circuit in Figure 1
let inputs = ["a", "b", "clk"];
let outputs = ["c", "s"];
let (mut circuit, [a, b, clk], [], []) =

Circuit::create(inputs, outputs, [], [], [], "HalfAdder");
let [clk1, clk2] = circuit.split(clk, None, None);
let [a1, a2] = circuit.split(a, None, None);
let [b1, b2] = circuit.split(b, None, None);
let c = circuit.and(a1, b1, clk1, Some("c"));
let s = circuit.xor(a2, b2, clk2, Some("s"));
circuit.set_outputs([c, s]);

Logic gates are instantiated by invoking dedicated functions on
the Circuit. Each function takes the Wires for the gate’s inputs
and takes ownership of them. Consequently, the Wire cannot be
used again. The gate function then returns a newly generated Wire
for its output, which is used as an input for the subsequent gate.

A Wire can only be obtained from the circuit’s input port or the
gates’ output, and can only be used exactly once. This mechanism
ensures the input–output consistency required in SFQ circuits.

The Wires corresponding to the circuit’s output port are passed
to the set_output() function, which consumes their ownership. If
any Wire remains unused, it violates the input–output consistency,
and the compiler issues a warning about an unused variable.

The Circuit has two functions to_spice() and to_verilog(),
which generate netlists in SPICE or Verilog format as strings. Con-
version of the DSL code into netlists is completed by compiling and
executing the code as a Rust code.

3 ADVANCED DESIGN
In the proposed DSL, circuits are described from upstream to down-
stream, but certain types of circuits cannot be described in this
manner. These include circuits with feedback loops and circuits
employing counter-flow clocking, in which the clock signal travels
in the opposite direction of the data flow.

To describe a circuit with loops, Wires at the upper end of the
loop are created along with the Circuit.The Wires at the lower end
are identified as the upper end using the set_loops() function.

To describe counter-flow clocking circuits, the CounterWire
type is introduced. The DSL provides only BUFF and SPLIT gate
functions for CounterWire, which are used in clock lines. In con-
trast to standard gate functions, these functions receive the output
CounterWire and return the input CounterWire. Listing 3 and Fig-
ure 2 illustrate these descriptions and show the resulting circuit
structures.

The DSL enables circuits to be parametrized, which is difficult in
netlists. For example, a delay circuit comprising a specified number
of BUFF gates is described in Listing 4. Here, Rust’s ownership
system is sufficiently strong to know that the Wire instance in

Listing 3: DSL Description for the circuit in Figure 2
let (mut c, [din], [loop0], [clkout]) = Circuit::create(
["din"], ["dout"], ["loop0"], ["clkout"], ["clkin"], "Advanced");

let (clk, clk0) = c.counter_split(clkout, None, None);
let d = c.or(din, loop0, clk0, None);
let (clk, clk0) = c.counter_split(clk, None, None);
let d = c.dff(d, clk0, None);
let (clkin, clk0) = c.counter_split(clk, Some("clkin"), None);
let d = c.dff(d, clk0, None);
let [dout, loop0] = c.split(d, Some("dout"), Some("loop0"));
c.set_outputs([dout]);
c.set_loops([loop0]);
c.set_counter_inputs([clkin]);

variable a is consumed and created in every iteration; thus, the
input–output consistency is still ensured.

A Circuit can be reused multiple times in another Circuit
using the subcircuit() function. The function takes the reused
Circuit and Wires for inputs, then returns Wires for outputs. The
number of inputs and outputs is statically checked with the circuit
type, which includes the port counts.

Listing 4: DSL Description for the circuit in Figure 3 (= = 5)
fn delay_circuit(n: u32) -> Circuit<1, 1, 0, 0, 0> {

let name = format!("delay{}", n);
let (mut c, [mut a], [], []) =
Circuit::create(["a"], ["q"], [], [], [], &name);
for i in 0..n {

let name = if i == n - 1 { Some("q") } else { None };
a = c.buff(a, name);

}
c.set_outputs([a]);
return c;

}
fn main() {

let delay5 = delay_circuit(5);
let (mut c, [d, clk], [], []) = Circuit::create(["din", "clk"],

["dout"], [], [], [], "main");
let ([clk], []) = c.subcircuit(&delay5, [clk], [], [None], []);
let [clk, clk1] = c.split(clk, None, None);
let d = c.dff(d, clk1, None);
let ([clk], []) = c.subcircuit(&delay5, [clk], [], [None], []);
let d = c.dff(d, clk, Some("dout"));
c.set_outputs([d]);
println!("{}", c.to_spice().join("\n"));

}

4 FUTUREWORK
The current DSL supports only cell-based bit-level representations
of SFQ circuits. For higher productivity, supporting multi-bit signals
and corresponding operations will be an essential feature improve-
ment. Unlike CMOS circuits, careful management of clock signals,
such as clock reach ordering to multiple gates [3], is mandatory.
We will develop the enhancement for automatic verification of
clock-related constraints.

Rust-Based Domain-Specific Language for SFQ Circuit Design LATTE ’25, March 30, 2025, Rotterdam, The Netherlands

REFERENCES
[1] Konstantin K Likharev and Vasilii K Semenov. RSFQ logic/memory family: A new

Josephson-junction technology for sub-terahertz-clock-frequency digital systems.
IEEE Transactions on Applied Superconductivity, 1(1):3–28, 1991.

[2] Koki Ishida, Ilkwon Byun, Ikki Nagaoka, Kosuke Fukumitsu, Masamitsu Tanaka,
Satoshi Kawakami, Teruo Tanimoto, Takatsugu Ono, Jangwoo Kim, and Koji Inoue.
SuperNPU: An extremely fast neural processing unit using superconducting logic
devices. In 2020 53rd Annual IEEE/ACM International Symposium on Microarchitec-
ture (MICRO), pages 58–72. IEEE, 2020.

[3] Kazuyoshi TAKAGI, Nobutaka KITO, and Naofumi TAKAGI. Circuit Description
and Design Flow of Superconducting SFQ Logic Circuits. IEICE Transactions on
Electronics, E97.C(3):149–156, 2014. doi: 10.1587/transele.E97.C.149.

[4] Lieze Schindler, Johannes A. Delport, and Coenrad J. Fourie. The ColdFlux RSFQ
Cell Library for MIT-LL SFQ5ee Fabrication Process. IEEE Transactions on Applied
Superconductivity, 32(2):1–7, 2022. doi: 10.1109/TASC.2021.3135905.

[5] Johannes Arnoldus Delport, Kyle Jackman, Paul le Roux, and Coenrad Johann
Fourie. JoSIM—Superconductor SPICE Simulator. IEEE Transactions on Applied
Superconductivity, 29(5):1–5, 2019. doi: 10.1109/TASC.2019.2897312.

	Abstract
	1 Introduction
	2 Implementation and Basic Design
	3 Advanced Design
	4 Future Work
	References

