Choc: A Communication Toolkit to Help Hardware Module
Drivers Navigate SoC Architectures

Mattis Hasler
Barkhausen Institut
Dresden, Germany

Abstract

Testing may be the most important part of hardware design. Test
early, test often, test in every possible stage. The basis for testing
a hardware unit is a driver. It abstracts the exact interfacing with
the unit and presents the user with an easy-to-use interface. While
the driver stays constant, the communication channel between
the driver and the unit may change drastically, depending on the
scenario. When embedding a unit into a system-on-chip, reaching
the unit might need to tunnel the communication through various
communication fabrics and/or protocols. This work presents a data
flow toolkit that abstracts from the communication channel thus
allowing easy modeling of connection interfaces. This means the
unit driver can be written early in development and tested in a
unit test case setup. The driver stays unmodified throughout the
development process until a fabricated chip is tested in the lab. Each
communication fabric or bridge also defines and tests its drivers in a
unit test environment. The composition of the final communication
pipeline is constructed as part of the top-level architecture design

by plugging together the building blocks.

ACM Reference Format:

Mattis Hasler ®. 2025. Choc: A Communication Toolkit to Help Hardware
Module Drivers Navigate SoC Architectures. In Proceedings of 4th Workshop
on Languages, Tools, and Techniques for Accelerator Design (LATTE 25). ACM,
New York, NY, USA, 3 pages.

1 Introduction

The development path of an accelerator consists of many steps.
Throughout this path, several different testing setups will be used.
In the ideal case, the driver used to access the hardware module
can stay constant the whole time. In the first phase of development,
the Device under Test (DUT) is very close to the driver. It can
directly send command words to the DUT, for example through
a register interface. Later in development, an accelerator may be
included into a bigger system to—as the name suggests—accelerate
special-purpose computation. Immediately, the distance between
the accelerator and its driver increases. The command words have
to be passed through the system’s infrastructure to reach the DUT.
As the project matures into a system-on-chip (SoC), the distance
between the DUT and the driver keeps increasing. Commands may
have to be passed through one or more system buses or network-on-
chips. While doing RTL simulation there may be a way to directly

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

LATTE °25, March 30, 2025, Rotterdam, The Netherlands

© 2025 Copyright held by the owner/author(s).

inject signals into the system bus, but at some point (e. g. netlist
simulation) that possibility also closes. Later access may only be
possible through the SoC (physical) pins using some communication
protocol like JTAG or UART for example. Ultimately, when the
chip is fabricated and arrives in the lab on a PCB, access to the
pins again gets more complicated. Access to the physical JTAG
interface from a PC needs a JTAG-to-USB converter and on the
controlling PC software, for example, OpenOCD [4]. The commands
are transferred over a couple of communication fabrics and have
been wrapped in equally many protocols, that the developer of the
accelerator should not be forced to care about.

We propose a communication toolkit, named Choc, to easily rep-
resent the communication structure of the hardware designs on the
test/software side. The communication is modularized, to match the
structure in hardware as a digital twin. Each hardware module that
implements a piece of communication fabric or a bridge between
two pieces also receives a software representation. Users plug the
software drivers into a pipeline that matches the hardware struc-
ture simply and intuitively. The toolkit enables the development of
modularized hardware that is easy to use/test, and reusable.

2 Related Work

Putting test cases into a Python environment and connecting a
simulator with the DUT has found its way into the mainstream
with cocotb [6]. Also other projects like pyvhdl [1] and cosimtcp [2]
present similar solutions. The Universal Verification Methodology
(UVM) register abstraction layer (RAL) defines standardized ways
of describing register files and tests for them. In [7] UVM RAL is
utilized to create reusable verification functions from unit tests to
system-level tests. Similar to this [5] shows a way to reuse cocotb-
based test cases in different chip design stages. Focusing on the
implementation of different bus protocols to get access to the DUT,
it does not cover environments up to the lab setup.

3 The Choc Communication Toolkit

The core functionality of Choc does not contain any implemen-
tations of protocols like JTAG or UART, but provides the basic
mechanics for building a typed dataflow pipeline. Choc is written
in Python with asyncio. Like cocotb, Choc uses Python as the lan-
guage for test cases and for the same reasons: Tests are software
and the DUT is hardware and both should be written in a language
that is designed for it [6] e. g. Python for software and Verilog for
Hardware. In addition, Choc also targets setups that are not based
on simulated but real hardware, and an HDL would be out of scope.

Choc is a data-flow toolkit, so the basic building blocks are data
processing blocks, called “Items”. Items define sockets, that have a
name, a direction (i. e. input or output), and a type, which can be
any Python type. Sockets can be hooked up to each other to create

https://orcid.org/0001-7979-674X
https://orcid.org/0001-7979-674X

LATTE °25, March 30, 2025, Rotterdam, The Netherlands

= JTAG — — ACC

Cut W Bridge — NoC
Bus

I
=
\
\
5
[Tl

Figure 1: Example SoC Communication Structure. Modules
are in blue, fabrics in orange.

data flows between Items. Crafting connections between Items can
easily be done using shift operators:

sender = RandInt()
transformer = Int2Str()
sender >> transformer

Because sockets are typed, the >> and << operators work flaw-
lesslys, even with multiple outputs and inputs. The type of a socket
is not restricted. It can easily be a class describing a complex request.
For example, a MemoryRequest will typically contain at least an
address, a data word and a mode (read/write). When replicating
hardware 1-to-1 any request type would need an additional re-
sponse type that is transferred over a second socket in the opposite
direction. Matching the response to the correct request requires
extra effort and is error-prone, especially when multiple parallel
requests are allowed and out-of-order processing of requests may
be supported.

To overcome this problem Choc defines an awaitable Request
class, that can be sent over sockets. The receiver of a Request can
commit() a result that unblocks the waiting initiator without send-
ing the result through sockets. It is common to inherit from Request
to create special-purpose requests like the MemoryRequest or a
ConfigRequest for the config bus. Like hardware modules convert-
ing signals from one interface to another, the corresponding driver
“Item” can create a request chain. It can convert each incoming
request of one type to a request of another type. When the derived
request is committed, the result will be back-converted, committing
it to the original request. For example, a MemoryRequest could be
serviced by synthesizing it to one or more ConfigRequest to access
a memory that is only reachable through the config bus.

4 SiCo: Connecting Simulators

The Item-socket-connection system works well for high-level data
structs like integers, strings, or requests. But at some point things
have to be converted to hardware signals, to “1” and “0”, maybe
even also “Z” and “X” and a few more. This is where the SiCo
(Simulation Controller) module comes into play. Using the standard
DPI and VPI simulator interfaces, it allows the connection of a Choc
environment to any simulator supporting one of the interfaces. It
provides Choc Items and corresponding SystemVerilog modules to
stream hardware signals both into and out of simulators. Signals
may be based on simulation time, clock cycles, or requests. For
request signals the Verilog module follows a simple ready-valid
interface to stream signals to/from the DUT.

5 Application

Choc and SiCo has been developed and refined over the course of
three MPSoC tape-outs, of which one is published [3], one is cur-
rently measured in the lab, and one is being fabricated. It is intended

Mattis Hasler

to simplify the software stack to operate a chip from the module de-
sign phase until testing the fabricated chips in the lab. The MPSoCs
share a common architecture, making the communication structure
similar, allowing the reuse of many communication modules. The
following will describe the communication pipeline for a custom
Accelerator (ACC) to showcase Choc. The ACC is controlled using
a driver class that accesses the hardware using RegisterRequests
to read and write registers. Originally it was planned that access to
the chip is mainly done over a FPGA evaluation board through the
chip’s LVDS link. Unfortunately, the LVDS-FPGA link proved to be
unusable, so that all communication had to be funneled through
the chip’s config bus. As displayed in Fig. 1, the ACC can be config-
ured using the JTAG controller, going through the config bus, the
NoC bridge, the NoC, and the NoC interface unit of the ACC. To
create a communication pipeline in Choc that follows this path, we
backtrack the connections and replace them by appropriate drivers:

acc = AccDriver()

nocif = nocIf(noc_addr=NOC_ADDR_ACC)

bridge = ConfToNoc(bus_addr=BUS_ADDR_BRIDGE)
jtag = JTAGCtrl()

acc >> nocif >> bridge >> jtag

acc.start()

With this pipeline a RegisterRequest from the AccDriver is
first converted to a NocRequest by the nocIf. The ConfToNoc item
runs an independent asynchronous task to emit ConfRequests to
drive the bridging hardware. That includes polling for new mes-
sages because the bridge is not a config bus master and cannot for-
ward received NoC messages into the config bus. The ConfRequests
are forwarded to the JTAGCtr1 driver that generates the appropriate
JTAG commands. In our lab setup, JTAG commands are processed
by an 00CDDriver that is connected to a running OpenOCD in-
stance. OpenOCD drives the USB-JTAG dongle that produces the
signals on the PCB.

6 Summary

Choc is a versatile communication toolkit that eases the process of
building communication pipelines for module/accelerator access
at any stage of an SoC project. In a Choc-enabled project, each
hardware module also defines a Choc "Item" that acts as a driver
for the software/test part of an SoC development project. Items
are independent data-flow processing units that can be connected
to create pipelines. Using pipelines wraps the communication pro-
tocols needed to connect to the DUT from the driver. SiCo is a
part of Choc and is the bridge between the controlling software
and a hardware design, simulated by any simulator software that
supports a VPI or DPI interface. Choc and SiCo are open source
as part of the “bilib”, the Barkhausen Instituts hardware building
block library'.

Acknowledgments

The project on which this report is based was funded by the German
Federal Ministry of Education and Research under grant number
16MEO0527. The author is responsible for the content of this publi-
cation.

Uhttps://github.com/Barkhausen-Institut/bilib

https://orcid.org/0001-7979-674X

Choc: A Communication Toolkit to Help Hardware Module Drivers Navigate SoC Architectures LATTE ’25, March 30, 2025, Rotterdam, The Netherlands

References

[1] Alfredo Benso, Stefano Di Carlo, Paolo Prinetto, and Y. Zorian. 2008. IEEE Standard
1500 Compliance Verification for Embedded Cores. Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on 16(4) (05 2008), 397 — 407. https://doi.org/10.
1109/TVLSI.2008.917412

Lukasz Butkowski and Koray Karakurt. 2019. CO-SIMULATION OF HDL USING
PYTHON AND MATLAB OVER TCL TCP/IP SOCKET IN XILINX VIVADO AND
MODELSIM TOOLS.

[3] Sebastian Haas, Christopher Dunkel, Friedrich Pauls, Mattis Hasler, and Yogesh
Verma. 2024. Trustworthy Silicon: An MPSoC for a Secure Operating System. In
2024 IEEE Nordic Circuits and Systems Conference (NorCAS). 1-7. https://doi.org/
10.1109/NorCAS64408.2024.10752473

Hubert Hégl and Dominic Rath. 2006. Open on-chip debugger—openocd-. Fakultat
fur Informatik, Tech. Rep (2006).

Marcin Ludwiniak and Arkadiusz W. Luczyk. 2024. Using Cocotb Framework
During Different Stages of IC Design. In 2024 31st International Conference on
Mixed Design of Integrated Circuits and System (MIXDES). 154-157. https://doi.
org/10.23919/MIXDES62605.2024.10613994

Benjamin John Rosser. 2018. Cocotb: a Python-based digital logic verification
framework. In Micro-electronics Section seminar. CERN, Geneva, Switzerland.
Tudor Timisescu and Uwe Simm. 2015. Leveraging the UVM Register Abstraction
Layer for Memory Sub-System Verification. Proceedings of DVCon (2015).

=

[4

(5

G

= =

https://doi.org/10.1109/TVLSI.2008.917412
https://doi.org/10.1109/TVLSI.2008.917412
https://doi.org/10.1109/NorCAS64408.2024.10752473
https://doi.org/10.1109/NorCAS64408.2024.10752473
https://doi.org/10.23919/MIXDES62605.2024.10613994
https://doi.org/10.23919/MIXDES62605.2024.10613994

	Abstract
	1 Introduction
	2 Related Work
	3 The Choc Communication Toolkit
	4 SiCo: Connecting Simulators
	5 Application
	6 Summary
	Acknowledgments
	References

