
Towards mechanized verification of Verilog equivalence checking
Michalis Pardalos

Imperial College London
United Kingdom

Laura Pozzi
Università della Svizzera italiana (USI)

Lugano
Switzerland

John Wickerson
Imperial College London

United Kingdom

Abstract
Equivalence checking is an essential tool in the verification engi-
neer’s toolbox, providing a high-assurance method to verify hard-
ware designs. These tools are trusted, whichmeans that equivalence
checker bugs can have very high impact. We believe that the way
to place this trust on a solid foundation is formal proof.

To this end, we are developing Vera, an equivalence checker
for Verilog, that is accompanied by a computer checked proof of
correctness in the Coq proof assistant. While we are still in the early
stages of development, benchmarks show that our tool is usable on
real-world designs.

We believe that this approach — proving automated verifiers
correct with computer-checked proofs — can also be more gener-
ally applicable, allowing hardware designers to benefit from the
assurances of computer-checked proofs for no additional effort.

1 Introduction
Among hardware verification techniques, equivalence checking
stands out for delivering stronger assurance than simulation-based
methods while handling designs that may not suit property-based
verification approaches. This power, however, means that equiva-
lence checking tools are highly trusted — a positive result from the
equivalence checker is often taken as close to definitive proof of
the correctness of the design.

However, this trust is not necessarily well placed. Equivalence
checkers, like all software, are not perfect, and bugs in the equiv-
alence checker can manifest themselves as missed bugs in real
designs. Recent work [7] has discovered a number of such bugs in
even commercial equivalence checkers.

We propose that the way to place this trust on a solid foundation
is computer-checked proof. Having access to an equivalence checker
that has been proven correct in a proof assistant would allow de-
signers to use the guarantees of this proof, while reaping all the
productivity benefits of automated verification.

With this goal in mind, we are developing Vera, an equivalence
checker for Verilog designs, which is accompanied by a proof of
correctness in the Coq [4] proof assistant. Although automated
hardware verification tools have existed for decades, they typically
lack formal guarantees of their own correctness. Our approach
combines the convenience of push-button automation with the
strong guarantees of mechanised proof.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
LATTE ’25, March 30, 2025, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

Our vision for this tool is as a drop-in replacement for a tool like
symbiyosys/eqy [11, 12] — but accompanied by a formal proof of
correctness. It should be possible for users to replace their current
choice of equivalence checker with our tool with minimal effort.
This includes both combinational and sequential equivalence check-
ing use-cases, while also covering enough of the Verilog language
to verify real-world designs.

2 Architecture
We are using Coq as both the implementation and verification
for Vera. The equivalence checker consists of a “frontend”, which
can be thought of as a compiler from Verilog to SMTLIB [3] and
a “backend” which uses SMTCoq [2] to get a verified result for
the SMTLIB query — either a model in the SAT case or a proof
of unsatisfiability if UNSAT. This is illustrated in Figure 1. The
frontend consists of an external (trusted) elaborator, and a series of
three passes — typechecking, canonicalization and SMT encoding
— which gradually lower the elaborated Verilog into SMTLIB.

The elaborator is primarily needed to resolve the implicit bit-
widths and signedness of Verilog expressions and simplify some
syntax into simpler constructs. It also functions as the parser. We
have used Slang [8] for this task. Once we have the elaborated
Verilog, in which every intermediate expression is annotated with
its type (width and signedness), we apply a series of passes that
gradually lower it into SMTLIB queries:

Typechecking First, we check that the types assigned by the
elaborator are consistent (e.g. that operands to arithmetic
operators have been assigned the same type). This eliminates
some possible errors from the unverified elaborator, and
the guarantees it establishes can be used by the correctness
proofs of later passes.

Canonicalization The next step is to eliminate any proce-
dural logic (i.e. “if”-statements) from the Verilog. The goal
is to get a module with a single, static assignment to each
wire/register, in either a combinational (always_comb) or
sequential (always_ff @(posedge clk)) block. This sim-
plifies the next pass.

SMT Encoding Having a single expression to determine the
value of each variable, we can produce a single assertion
statement for each of those assignments in SMTLIB, using
the QF_BV (quantifier-free bitvector) logic to encode the
expressions.

The combination of these three passes gives us an encoding of
the source Verilog in SMTLIB. The encodings of the two modules
to be compared can then be combined in a straightforward way to
yield a larger query which asks for evidence of a difference between
the two modules.



LATTE ’25, March 30, 2025, Rotterdam, Netherlands Michalis Pardalos, Laura Pozzi, and John Wickerson

Source
Verilog

Elaborator
(external)

Elaborated
Verilog Typechecking Canonicalization

SMT
Encoding SMTLIB SMT

Solver
Counterexample

or proof

SMTCoq

Figure 1: Equivalence checker structure.
Passes drawn as ellipses, intermediate languages drawn as rectangles.

0 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

0
5
10
15
20
25
30
35
40
45
50
55
60
65

Time elapsed (seconds)

N
um

be
ro

fb
en
ch
m
ar
ks

co
m
pl
et
ed

Figure 2: Runtimes of successful benchmarks

3 Formal verification approach
Intuitively, the correctness theorem for the equivalence checker
should state that if it gives a positive result, then, for identical inputs,
both modules produce identical outputs for all cycles. If it gives
a negative result (which needs to come with a counter-example)
then that counter-example should indeed indicate a difference. It
should be possible to replicate it by running the module on the
inputs specified by the counterexample. Since it is also possible to
produce an error, we make no guarantees about that case.

We plan to establish this high-level correctness theorem by chain-
ing together the correctness of the intermediate passes. This is
trivially true for the typechecking pass, since it only performs a
check. For the canonicalization pass, we can re-use the high-level
equivalence statement, showing that the design before and after
canonicalization are equivalent. Finally, for the SMT encoding pass,
this equivalence can be expressed as the generated formula be-
ing satisfiable for all possible valuations of the input variables if
and only if the output variables are given the values produced by
running the Verilog module on those inputs.

The Verilog semantics that we are using for verification is a
modified version of those used in the Lutsig Verilog synthesiser [6],
with some key changes. Namely, we more closely follow the Verilog
standard in regards to Verilog ‘X’ values.

4 Preliminary Evaluation
We ran a preliminary evaluation of Vera on the EPFL benchmark
suite [1]. For each benchmark, we used Vera to compare Verilog
version against its BLIF [10] (Berkeley Logic Interchange Format)
version (converting the BLIF to verilog using yosys), as well as
against its depth- and size-optimised versions. Out of a total of 60
tests, 44 were successful (produced a “positive” result), 10 produced

negative results or errors (indicating a bug in the current, unverified,
version of Vera), and 6 timed out (after a time-out of one hour). The
runtimes of successful benchmarks are summarised in Figure 2.

While we are still investigating the incorrect results, we find the
low number of timeouts (and reasonable average checking time) en-
couraging. Our current design does not perform any optimisations,
relying entirely on the SMT solver, which for these benchmarks
was Z3 [5]. Yet, it appears to be sufficient to successfully verify
these small-to-moderate size benchmarks. Adding optimisation or
simplification passes to the equivalence checker, as well as exper-
imenting with different SMT solvers could improve these results
further.

5 Research Direction
The immediate next goal of this project is to complete the correct-
ness proof. Parts of this proof will be based on the correctness proof
of Lutsig [6]. Particularly, the typechecking pass is very similar to
that of Lutsig, and the canonicalization pass shares some similari-
ties with the synthesis process — which in Lutsig is a compilation
pass from Verilog to a netlist.

A usual feature of equivalence checking tools which has not
been discussed is sequential equivalence checking. This is usually
achieved using a method such as k-induction [9]. Implementation
of such an algorithm is simple, however proving it correct is an
entirely different matter, as it will require changes to the correct-
ness statement of the checker. Nevertheless, we expect it to be an
incremental extension, as correctness of combinational checking is
a necessary prerequisite for sequential checking.

The design we have described contains a trusted component —
the elaborator. This is following with previous work on formally
verified Verilog tooling (namely, Lutsig) which also uses a trusted
external elaborator. We consider this to be an interesting verifica-
tion task, which is, however, outside the scope of this work.

6 Conclusion
We have presented our preliminary work on Vera, an automated
equivalence checker for Verilog with a mechanized proof of correct-
ness. Our performance evaluation shows promising initial results,
which we expect to improve further with additional optimisations
and experimentation with alternative SMT solvers.

We believe that this category of hardware design tooling — au-
tomated verifiers — are a prime target for mechanized verification.
Establishing a formal proof of correctness for these tools allows
users to benefit from this high assurance standard for free, estab-
lishing the correctness of their designs with no additional effort
over an “unverified” verifier.



Towards mechanized verification of Verilog equivalence checking LATTE ’25, March 30, 2025, Rotterdam, Netherlands

References
[1] Luca Amarù, Pierre-Emmanuel Gaillardon, and Giovanni De Micheli. 2015. The

EPFL Combinational Benchmark Suite. Proceedings of the 24th International
Workshop on Logic and Synthesis (IWLS). https://infoscience.epfl.ch/handle/20.
500.14299/113476

[2] Michael Armand, Germain Faure, Benjamin Grégoire, Chantal Keller, Laurent
Théry, and Benjamin Werner. 2011. A Modular Integration of SAT/SMT Solvers
to Coq through Proof Witnesses. Springer Berlin Heidelberg, 135–150. https:
//doi.org/10.1007/978-3-642-25379-9_12

[3] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. 2016. The Satisfiability Modulo
Theories Library (SMT-LIB). https://www.SMT-LIB.org.

[4] Yves Bertot and Pierre Castéran. 2004. Interactive Theorem Proving and Program
Development. Springer Berlin Heidelberg. nil pages. https://doi.org/10.1007/978-
3-662-07964-5

[5] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: an efficient SMT solver. In
Proceedings of the Theory and Practice of Software, 14th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (Budapest,
Hungary) (TACAS’08/ETAPS’08). Springer-Verlag, Berlin, Heidelberg, 337–340.

[6] Andreas Lööw. 2021. Lutsig: a verified Verilog compiler for verified circuit
development. In Proceedings of the 10th ACM SIGPLAN International Conference

on Certified Programs and Proofs (CPP ’21). ACM. https://doi.org/10.1145/3437992.
3439916

[7] Michalis Pardalos, Alastair F. Donaldson, and Emiliano Morini. 2024. Who
checks the checkers? Automatically finding bugs in C-to-RTL Formal Equivalence
Checkers. (2024). https://doi.org/10.30420/566438006

[8] Michael Popoloski. 2015–2025. slang. https://github.com/MikePopoloski/slang.
MIT License.

[9] Mary Sheeran, Satnam Singh, and Gunnar Stålmarck. 2000. Checking Safety
Properties Using Induction and a SAT-Solver. In Formal Methods in Computer-
Aided Design. Springer Berlin Heidelberg, 127–144. https://doi.org/10.1007/3-
540-40922-x_8

[10] Berkeley University of California. 1992. Berkeley Logic Interchange Format (BLIF).
Technical Report. University of California, Berkeley. https://course.ece.cmu.edu/
~ee760/760docs/blif.pdf

[11] Claire Xenia Wolf, N. Engelhardt, National Technology, and LLC Engineering
Solutions of Sandia. 2020. Equivalence Checking with Yosys (EQY). https:
//yosyshq.readthedocs.io/projects/eqy/en/latest/. Front-end driver program for
Yosys-based formal hardware verification flows. Licensed under the ISC license..

[12] YosysHQ. 2020. SymbiYosys: A Formal Verification Framework for Yosys. https:
//yosyshq.readthedocs.io/projects/yosys/en/latest/. A formal verification front-
end for Yosys-based hardware designs. Licensed under the ISC license..

https://infoscience.epfl.ch/handle/20.500.14299/113476
https://infoscience.epfl.ch/handle/20.500.14299/113476
https://doi.org/10.1007/978-3-642-25379-9_12
https://doi.org/10.1007/978-3-642-25379-9_12
https://www.SMT-LIB.org
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1145/3437992.3439916
https://doi.org/10.1145/3437992.3439916
https://doi.org/10.30420/566438006
https://github.com/MikePopoloski/slang
https://doi.org/10.1007/3-540-40922-x_8
https://doi.org/10.1007/3-540-40922-x_8
https://course.ece.cmu.edu/~ee760/760docs/blif.pdf
https://course.ece.cmu.edu/~ee760/760docs/blif.pdf
https://yosyshq.readthedocs.io/projects/eqy/en/latest/
https://yosyshq.readthedocs.io/projects/eqy/en/latest/
https://yosyshq.readthedocs.io/projects/yosys/en/latest/
https://yosyshq.readthedocs.io/projects/yosys/en/latest/

	Abstract
	1 Introduction
	2 Architecture
	3 Formal verification approach
	4 Preliminary Evaluation
	5 Research Direction
	6 Conclusion
	References

