
Reconfiguring the Imaging Pipeline for Computer Vision:
Supplemental Material

Mark Buckler
Cornell University

Suren Jayasuriya
Carnegie Mellon University

Adrian Sampson
Cornell University

This supplemental material contains additional back-
ground about the traditional image signal processing
pipeline, additional empirical results, and more quan-
titative detail behind the design decisions that inform
our proposed “vision mode.”

Contents

1. Background: The Imaging Pipeline 1

2. Proposed Pipelines 2

3. Approximate Demosaicing 2

4. Resolution 3

5. Quantization 4

6. ISP Profiling 5

1. Background: The Imaging Pipeline

For readers unfamiliar with the ISP pipeline, we
describe the standard pipeline found in any modern
camera, from DSLRs to smartphones. This expands on
Section 3.1 in the main paper.

We consider a complete system including a computer
vision algorithm that processes images and produces
vision results. Figure 1a in the main paper depicts
the traditional pipeline. The main components are
an image sensor, which reacts to light and produces
a RAW image signal; an image signal processor (ISP)
unit, which transforms, enhances, and compresses the
signal to produce a complete image, usually in JPEG
format; and the vision application itself.

1.1. Camera Sensor

The first step in statically capturing a scene is to
convert light into an electronic form. Both CCD and
CMOS image sensors use solid state devices which take
advantage of the photoelectric effect to convert light

into voltage. Most modern devices use CMOS sensors,
which use active arrays of photodiodes to convert light
to charge, and then to convert charge to voltage. These
pixels are typically the size of a few microns, with mod-
ern mobile image sensors reaching sizes of 1.1 µm, and
are configured in arrays consisting of several megapixels.

CMOS photodiodes have a broadband spectral re-
sponse in visible light, so they can only capture
monochrome intensity data by themselves. To capture
color, sensors add photodiode-sized filters that allow
specific wavelengths of light to pass through. Each
photodiode is therefore statically allocated to sense a
specific color: typically red, green, or blue. The layout
of these filters is called the mosaic. The most common
mosaic is the Bayer filter [8], which is a 2×2 pattern
consisting of two green pixels, one red pixel, and one
blue pixel. The emphasis on green emulates the hu-
man visual system, which is more sensitive to green
wavelengths.

During capture, the camera reads out a row of the
image sensor where each pixel voltage is amplified at
the column level and then quantized with an ADC. A
frame rate determines the time it takes to read and
quantize a complete image. The camera emits a digital
signal referred to as a RAW image, and sends it to the
ISP for processing.

1.2. Image Signal Processor

Modern mobile devices couple the image sensor with
a specialized image signal processor (ISP) chip, which
is responsible for transforming the RAW data to a final,
compressed image—typically, a JPEG file. ISPs consist
of a series of signal processing stages that are designed
to make the images more palatable for human vision.
While the precise makeup of an ISP pipeline varies, we
describe a typical set of stages found in most designs
here.

Denoising. RAW images suffer from three sources of
noise: shot noise, due to the physics of light detection;
thermal noise in the pixels, and read noise from the

1



readout circuitry. The ISP uses a denoising algorithm
such as BM3D [2] or NLM [1] to improve the image’s
SNR without blurring important image features such as
edges and textures. Denoising algorithms are typically
expensive because they utilize spatial context, and it is
particularly difficult in low-light scenarios.

Demosaicing. The next stage compensates for the
image sensor’s color filter mosaic. In the Bayer layout,
each pixel in the RAW image contains either red, green,
or blue data; in the output image, each pixel must
contain all three channels. The demosaicing algorithm
fills in the missing color channels for each pixel by
interpolating values from neighboring pixels. Simple
interpolation algorithms such as nearest-neighbor or
averaging lead to blurry edges and other artifacts, so
more advanced demosaicing algorithms use gradient-
based information at each pixel to help preserve sharp
edge details.

Color transformations and gamut mapping. A
series of color transformation stages translate the image
into a color space that is visually pleasing. These color
transformations are local, per-pixel operations given by
a 3×3 matrix multiplication. For a given pixel p ∈ R3,
a linear color transformation is a matrix multiplication:

p′ = Mp (1)

where M ∈ R3×3.
The first transformations are color mapping and

white balancing. Color mapping reduces the intensity
of the green channel to match that of blue and red
and includes modifications for artistic effect. The white
balancing transformation converts the image’s color
temperature to match that of the lighting in the scene.
The matrix values for these transformations are typically
chosen specifically by each camera manufacturer for
aesthetic effect.

The next stage is gamut mapping, which converts
color values captured outside of a display’s acceptable
color range (but still perceivable to human vision) into
acceptable color values. Gamut mapping, unlike the
prior stages, is nonlinear (but still per-pixel). ISPs may
also transform the image into a non-RGB color space,
such as YUV or HSV [8].

Tone mapping. The next stage, tone mapping, is
a nonlinear, per-pixel function with multiple responsi-
bilities. It compresses the image’s dynamic range and
applies additional aesthetic effects. Typically, this pro-
cess results in aesthetically pleasing visual contrast for
an image, making the dark areas brighter while not

overexposing or saturating the bright areas. One type
of global tone mapping called gamma compression
transforms the luminance of a pixel p (in YUV space):

p′ = Apγ (2)

where A > 0 and 0 < γ < 1. However, most modern
ISPs use more computationally expensive, local tone
mapping based on contrast or gradient domain methods
to enhance image quality, specifically for high dynamic
range scenes such as outdoors and bright lighting.

Compression. In addition to reducing storage re-
quirements, compression helps reduce the amount of
data transmitted between chips. In many systems, all
three components—the image sensor, ISP, and applica-
tion logic—are on physically separate integrated circuits,
so communication requires costly off-chip transmission.

The most common image compression standard is
JPEG, which uses the discrete cosine transform quanti-
zation to exploit signal sparsity in the high-frequency
space. Other algorithms, such as JPEG 2000, use the
wavelet transform, but the idea is the same: allocate
more stage to low-frequency information and omit high-
frequency information to sacrifice detail for space ef-
ficiency. This JPEG algorithm is typically physically
instantiated as a codec that forms a dedicated block of
logic on the ISP.

2. Proposed Pipelines

The main paper describes two potential simplified
ISP pipelines including only the stages that are essential
for all algorithms we studied: demosaicing, gamma com-
pression, and denoising. Normalized data was shown
in the main paper to make more efficient use of space,
but here in Figure 1 we show the absolute error for
each benchmark. As depicted in the main paper, the
pipeline with just demosaicing and gamma compression
performs close to the baseline for most benchmarks;
the outlier is SGBM, where denoising has a significant
effect. OpenFace, also as discussed in the main paper,
is alone in performing better on the converted images
than on the original dataset.

3. Approximate Demosaicing

We find that the demosaicing ISP stage is useful for
the vision applications we examine. In the main paper,
we describe subsampling as a circuit-level replacement
for “true” demosaicing on the ISP.

Here, we also consider two other lower-quality demo-
saicing techniques that use simpler signal processing.
The two techniques are bilinear interpolation and a
nearest-neighbor algorithm. Figure 2 visualizes these

2



��
��
���

�
��
�
��
��
���

������

����
����
����
����
����
����

��
�
�
��
��
�

��
��
���

�
��
�
��
��
���

��������

����

����

����

����

����

����

��
�
�
��
��
�

��
��
���

�
��
�
��
��
���

��������

����
����
����
����
����
����
����
����
����
����

��
�
�
��
��
�

��
��
���

�
��
�
��
��
���

����

���

���

���

���

���

���

���

�
��

��

��
��
���

�
��
�
��
��
���

��������

����
����
����
����
����
����
����
����
����
����
����

�
��
�
��
��
�

��
��
���

�
��
�
��
��
���

���������

���
���
���
���
���
���
���
���

�
��
�
��
��
�

��
��
���

�
��
�
��
��
���

����

����

����

����

����

����

����

�
��
�
��
��
�

��
��
���

�
��
�
��
��
���

�������

����
����
����
����
����
����
����
����
����
����
����

��
��
��
�
��

��

Figure 1: Vision accuracy for two proposed pipelines.

(a) Subsample (b) Bilinear (c) NN

Figure 2: Visualizations for the approximate forms of
demosaicing: subsampling, bilinear interpolation, and
a nearest-neighbor algorithm.

�������� ��������� �� ��������
��������������������

���
���
���
���
���
���
���
���
���

��
��
��
���
�
��
��
�

�����������
��������
����
�������
���������
����

Figure 3: Normalized task error for four demosaicing
strategies. Each cluster shows a configuration simulat-
ing a pipeline with only gamma compression enabled.
The demosaic cluster shows the original demosaiced
data (i.e., all stages were reversed except for demosaic-
ing). The others show images with simulated demo-
saicing using subsampling (the strategy described in
the main paper), nearest-neighbor demosaicing, and
bilinear interpolation.

techniques and Figure 3 shows their results. Our sub-
sample demosaicing fills in missing channel values from
their corresponding channels in the Bayer pattern. Bi-

linear interpolation fills channel values by averaging
the corresponding local pixels, and the nearest-neighbor
technique simply copies the channel value from a nearby
pixel.

Figure 3 compares the vision task performance for
these techniques. All three mechanisms lead to similar
vision error. For this reason, we chose the cheapest
technique, which eliminates the need for any signal
processing: subsampling.

4. Resolution

While the resolution of a standard mobile system’s
image sensor can be on the order of a megapixel, the in-
put resolution to a state-of-the-art convolutional neural
network is often no more than 300×300. For this reason,
images are typically scaled down to fit the input dimen-
sions of the neural network. While the algorithms used
to scale down these images are typically edge aware,
it is also possible to output a reduced resolution from
the image sensor. One method of doing this is pixel-
binning which connects multiple photodiodes together,
collectively increasing the charge and thereby reducing
the error associated with signal amplification [9].

Figure 4 shows the results of our resolution experi-
ments we conducted with the high resolution version of
CIFAR-10 dataset that we describe in the main paper.
Our testing was conducted by averaging pixels in the
region of the sensor which would be binned, thereby
reducing resolution. Any further reduction in accuracy
was performed with OpenCV’s edge aware image scaling
algorithm [4]. As can be seen in Figure 4 the increase in
error when using pixel binning isn’t remarkably large,
but we find generally capturing with a higher resultion
is always better if possible. This presents a tradeoff
between energy used to capture the image and the error
for vision tasks.

3



Demosaic NL-Means Denoise Color Transforms Gamut Map Tone Map JPEG Compress

Instructions 3.45× 108 4.84× 1011 2.40× 108 5.38× 108 4.63× 108 6.74× 108

Cycles 3.62× 108 3.06× 1011 2.26× 108 8.09× 108 4.84× 108 2.94× 108

Cache Refs 4.17× 106 1.60× 108 1.80× 106 4.11× 106 2.63× 106 6.96× 105

FP Ops 1.95× 105 6.77× 108 1.45× 105 2.43× 105 1.52× 105 9.40× 103

Table 1: Profiling statistics for software implementations of each ISP pipeline stage.

����
����
����
����
����
����
����
����
����
����
����

��
��
�

��
��� ��
�

��
��

��
��

����������

�����������
������
��������
��������

Figure 4: Impact of resolution on three CNNs for object
recognition. Using a custom data set consisting of
higher-resolution images from ImageNet matching the
CIFAR-10 categories, we simulate pixel binning in the
sensor, which produces downsampled images. The y-
axis shows the top-1 error for each network.

5. Quantization

In the main paper, we present logarithmic quantiza-
tion as a way to replace digital gamma compression in
the ISP. As we discussed, the benefit that gamma com-
pression provides is largely to enable a more compressed
encoding to represent the intensity values by converting
the data distribution from log-normal to normal. How-
ever, information theory tells us that we can achieve the
minimum quantization error (and maximum entropy)
when the encoded distribution is uniform [5]. So, in this
section we go further by exploring the possibility of tun-
ing quantization specifically to the statistical properties
of natural scenes.

To compute the optimal quantization levels for our
data, we first fit a log-normal curve to the histogram of
natural images. For our experiments we used a subset of
CIFAR-10 [7] which had been converted to its raw form
using the CRIP tool. This log-normal curve served as
our probability density function (PDF), which we then
integrated to compute our cumulative density function
(CDF). We then inverted the CDF to determine the

0 50 100 150 200 250
Encoded Channel Intensity

0.00

0.01

0.02

0.03

0.04

0.05

P
ro

b
a
b
ili

ty

0 50 100 150 200 250
Encoded Channel Intensity

0.000

0.001

0.002

0.003

0.004

0.005

P
ro

b
a
b
ili

ty

Figure 5: Histograms of the light intensity distribution
for CRIP-converted raw CIFAR-10 data (top) and CDF
quantized CIFAR-10 data (bottom).

��������
����

���

���

���

���

���

���

���

���

���

(a) Logarithmic.

��������
����

���

���

���

���

���

���

���

���

���

��
��
��
���
�
��
��
�

�����������
������
��������
��������
����
��������
���������
����
�������

(b) CDF-based.

Figure 6: Effect of the image quantization strategy
on vision accuracy in a pipeline with only demosaicing
enabled. This figure shows logarithmic quantization and
a second strategy based on measuring the cumulative
distribution function (CDF) of the input data. For
traditional linear quantization, see the main paper.

distribution of quantization levels. Using uniformly
distributed values across the CDF results in uniformly
distributed encoded (digital) values. Figure 5 shows
both the input and quantized distributions.

This CDF-based technique approximates the
minimum-entropy quantization distribution. An even
more precise distribution of levels may be derived using
the Lloyd-Max algorithm [3].

Figure 6 compares the vision task performance using

4



this CDF technique with the simpler, data-agnostic log-
arithmic quantization described in the main paper. The
error across all applications tends to be lower. While
the logarithmic quantization strategy is less sensitive to
bit-width reduction than linear quantization, the CDF
technique is even less sensitive. Where 5 bits suffice
for most benchmarks under logarithmic quantization, 4
bits generally suffice with CDF-based quantization.

Our main proposal focuses on logarithmic quanti-
zation, however, because of hardware feasibility: log-
arithmic ADCs are known in the literature and can
be implemented with a piecewise-linear approximation
scheme [6]. Using the CDF quantization scheme would
require an ADC with arbitrary quantization levels; the
hardware complexity for such an ADC design is not
clear in the literature.

6. ISP Profiling

While total energy numbers for ISPs have been pub-
lished, we are unaware of an energy breakdown per ISP
stage. A promising area of future work is to simulate
each ISP stage at the hardware level, but as a simpler
examination of ISP stage costs, we present measure-
ments based on software profiling. For the description
of the experimental setup, see the main paper.

In Table 1, we show the number of dynamic instruc-
tions, cycles, L1 cache references, and floating-point
operations needed to perform each of the ISP stages.
In the table, instructions indicates the number of dy-
namic assembly instructions that the CPU executed,
and cycles shows the number of CPU cycles elapsed
during execution. When the cycle count is smaller than
the number of instructions, the CPU has successfully
extracted instruction-level parallelism (ILP); otherwise,
performance is worsened by lower ILP or frequent mem-
ory accesses. The cache refs row quantifies the rate
of memory accesses: it shows the number of times the
L1 cache was accessed, which is an upper bound on
the number of access to off-chip main memory. While
most operations in a CPU use simple fixed-point and
integer arithmetic, complex scientific computation uses
floating-point operations, which are more expensive.
The FP ops row shows the number of floating-point
instructions executed in each stage.

With this level of detail, we see that denoising is
a significantly more complex stage than the others.
With this one exception, all stages require similar num-
bers of instructions, cycles, and cache references. The
floating-point operation frequency is similar as well,
with the exception of the JPEG compression stage: the
JPEG codec is optimized for fixed-point implementa-
tion. We plan to explore these costs in more detail
with a hardware implementation in future work, but

these software-based measurements demonstrate that
the implementation of the denoising stage will be of
particular importance.

References

[1] A. Buades, B. Coll, and J. M. Morel. A review of im-
age denoising algorithms, with a new one. Multiscale
Model Simulation, 4(2):490–530, 2005.

[2] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian.
Image denoising by sparse 3-D transform-domain
collaborative filtering. IEEE Transactions on Image
Processing, 16(8):2080–2095, Aug. 2007.

[3] M. Garey, D. Johnson, and H. Witsenhausen. The
complexity of the generalized Lloyd–Max prob-
lem. IEEE Transactions on Information Theory,
28(2):255–256, Mar. 1982.

[4] Itseez. OpenCV. http://opencv.org.

[5] H. K. J.N. Kapur. Entropy Optimization Principles
and Their Applications, volume 9. Water Science
and Technology Library, 1992.

[6] M. Judy, A. M. Sodagar, R. Lotfi, and M. Sawan.
Nonlinear signal-specific adc for efficient neural
recording in brain-machine interfaces. IEEE
Transactions on Biomedical Circuits and Systems,
8(3):371–381, June 2014.

[7] A. Krizhevsky and G. Hinton. Learning multiple
layers of features from tiny images. Technical report,
University of Toronto, 2009.

[8] R. E. W. Rafael C. Gonzalez. Digital Image Pro-
cessing (4th Edition). Pearson, 2017.

[9] Z. Zhou, B. Pain, and E. R. Fossum. Frame-transfer
cmos active pixel sensor with pixel binning. IEEE
Transactions on Electron Devices, 44(10):1764–1768,
Oct. 1997.

5

http://opencv.org

