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Abstract

Advancements in deep learning have ignited an ex-
plosion of research on efficient hardware for embedded
computer vision. Hardware vision acceleration, however,
does not address the cost of capturing and processing
the image data that feeds these algorithms. We examine
the role of the image signal processing (ISP) pipeline
in computer vision to identify opportunities to reduce
computation and save energy. The key insight is that
imaging pipelines should be be configurable: to switch
between a traditional photography mode and a low-
power vision mode that produces lower-quality image
data suitable only for computer vision. We use eight
computer vision algorithms and a reversible pipeline
simulation tool to study the imaging system’s impact
on vision performance. For both CNN-based and clas-
sical vision algorithms, we observe that only two ISP
stages, demosaicing and gamma compression, are crit-
ical for task performance. We propose a new image
sensor design that can compensate for these stages. The
sensor design features an adjustable resolution and tun-
able analog-to-digital converters (ADCs). Our proposed
imaging system’s vision mode disables the ISP entirely
and configures the sensor to produce subsampled, lower-
precision image data. This vision mode can save ∼75%
of the average energy of a baseline photography mode
with only a small impact on vision task accuracy.

1. Introduction

The deep learning revolution has accelerated progress
in a plethora of computer vision tasks. To bring these
vision capabilities within the battery budget of a smart-
phone, a wave of recent work has designed custom hard-
ware for inference in deep neural networks [15, 19, 30].
This work, however, only addresses part of the whole
cost: embedded vision involves the entire imaging
pipeline, from photons to task result. As hardware
acceleration reduces the energy cost of inference, the
cost to capture and process images will consume a larger
share of total system power [9, 31].

We study the potential for co-design between camera
systems and vision algorithms to improve their end-to-
end efficiency. Existing imaging pipelines are designed
for photography: they produce high-quality images for
human consumption. An imaging pipeline consists of
the image sensor itself and an image signal processor
(ISP) chip, both of which are hard-wired to produce
high-resolution, low-noise, color-corrected photographs.
Modern computer vision algorithms, however, do not re-
quire the same level of quality that humans do. Our key
observation is that mainstream, photography-oriented
imaging hardware wastes time and energy to provide
quality that computer vision algorithms do not need.

We propose to make imaging pipelines configurable.
The pipeline should support both a traditional photog-
raphy mode and an additional, low-power vision mode.
In vision mode, the sensor can save energy by producing
lower-resolution, lower-precision image data, and the
ISP can skip stages or disable itself altogether. We
examine the potential for a vision mode in imaging
systems by measuring its impact on the hardware effi-
ciency and vision accuracy. We study vision algorithms’
sensitivity to sensor parameters and to individual ISP
stages, and we use the results to propose an end-to-end
design for an imaging pipeline’s vision mode.

Contributions: This paper proposes a set of mod-
ifications to a traditional camera sensor to support a
vision mode. The design uses variable-accuracy analog-
to-digital converters (ADCs) to reduce the cost of pixel
capture and power-gated selective readout to adjust
sensor resolution. The sensor’s subsampling and quan-
tization hardware approximates the effects of two tradi-
tional ISP stages, demosaicing and gamma compression.
With this augmented sensor, we propose to disable the
ISP altogether in vision mode.

We also describe a methodology for studying the
imaging system’s role in computer vision performance.
We have developed a tool that simulates a configurable
imaging pipeline and its inverse to convert plain im-
ages to approximate raw signals. This tool is critical
for generating training data for learning-based vision
algorithms that need examples of images produced by



a hypothetical imaging pipeline. Section 3.2 describes
the open-source simulation infrastructure.

We use our methodology to examine eight vision
applications, including classical algorithms for stereo,
optical flow, and structure-from-motion; and convolu-
tional neural networks (CNNs) for object recognition
and detection. For these applications, we find that:

• Most traditional ISP stages are unnecessary when
targeting computer vision. For all but one appli-
cation we tested, only two stages had significant
effects on vision accuracy: demosaicing and gamma
compression.

• Our image sensor can approximate the effects of
demosaicing and gamma compression in the mixed-
signal domain. Using these in-sensor techniques
eliminates the need for a separate ISP for most
vision applications.

• Our image sensor can reduce its bitwidth from 12
to 5 by replacing linear ADC quantization with log-
arithmic quantization while maintaining the same
level of task performance.

Altogether, the proposed vision mode can use roughly a
quarter of the imaging-pipeline energy of a traditional
photography mode without significantly affecting the
performance of most vision algorithms we studied.

2. Related Work

Energy-efficient Deep Learning: Recent re-
search has focused on dedicated ASICs for deep learn-
ing [10, 15, 19, 30, 38? ] to reduce the cost of forward
inference compared to a GPU or CPU. Our work com-
plements this agenda by focusing on energy efficiency in
the rest of the system: we propose to pair low-power vi-
sion implementations with low-power sensing circuitry.

ISPs for Vision: While most ISPs are fixed-
function designs, Vasilyev et al. [45] propose to use
a programmable CGRA architecture to make them
more flexible, and other work has synthesized custom
ISPs onto FPGAs [22, 23]. Mainstream cameras, in-
cluding smartphones [2], can bypass the ISP to produce
RAW images, but the associated impact on vision is not
known. Liu et al. [32] propose an ISP that selectively
disables stages depending on application needs. We
also explore sensitivity to ISP stages, and we propose
changes to the image sensor hardware that subsume
critical stages in a traditional ISP.

Image Sensors for Vision: In industry, some cam-
eras are marketed with vision-specific designs. For
example, Centeye [5] offers image sensors based on a
logarithmic-response pixel circuit [16] for high dynamic
range. Omid-Zohoor et al. [35] propose logarithmic, low-
bitwidth ADCs and on-sensor processing for efficient

featurization using the histogram of oriented gradients.
Focal-plane processing can compute basic functions such
as edge detection in analog on the sensor [11, 33]. Red-
Eye [30] computes initial convolutions for a CNN using
a custom sensor ADC, and Chen et al. [8] approxi-
mate the first layer optically using angle-sensitive pixels.
Event-based vision sensors detect temporal motion with
custom pixels [3, 25]. Chakrabarti [7] proposes to learn
novel, non-Bayer sensor layouts using backpropagation.
We focus instead on minimally invasive changes to ex-
isting camera pipelines. To our knowledge, this is the
first work to measure vision applications’ sensitivity
to design decisions in a traditional ISP pipeline. Our
proposed pipeline can support both computer vision
and traditional photography.

Other work has measured the energy of image sensing:
there are potential energy savings when adjusting a
sensor’s frame rate and resolution [31]. Lower-powered
image sensors have been used to decide when to activate
traditional cameras and full vision computations [20].

Compressive sensing shares our goal of reducing sens-
ing cost, but it relies on complex computations to re-
cover images [14]. In contrast, our proposed pipeline lets
vision algorithms work directly on sensor data without
additional image reconstruction.

Error Tolerance in CNNs: Recent work by Dia-
mond et al. [13] studies the impact of sensor noise and
blurring on CNN accuracy and develops strategies to
tolerate it. Our focus is broader: we consider a range of
sensor and ISP stages, and we measure both CNN-based
and “classical” computer vision algorithms.

3. Background & Experimental Setup

3.1. The Imaging Pipeline

Figure 1a depicts a traditional imaging pipeline that
feeds a vision application. The main components are
an image sensor, which reacts to light and produces
a RAW image; an image signal processor (ISP) unit,
which transforms, enhances, and compresses the signal
to produce a complete image, usually in JPEG format;
and the vision application itself.

ISPs consist of a series of signal processing stages.
While the precise makeup of an ISP pipeline varies,
we consider a typical set of stages common to all ISP
pipelines: denoising, demosaicing, color transforma-
tions, gamut mapping, tone mapping, and image com-
pression. This simple pipeline is idealized: modern
ISPs can comprise hundreds of proprietary stages. For
example, tone mapping and denoising can use complex,
adaptive operations that are customized for specific
camera hardware. In this paper, we consider a simple
form of global tone mapping that performs gamma com-



(a) Standard pipeline.

(b) Proposed pipeline.

Figure 1: The standard imaging pipeline (a) and our
proposed pipeline (b) for our design’s vision mode.

Figure 2: Configurable & Reversible Imaging Pipeline.

pression. We also omit analyses that control the sensor,
such as autoexposure and autofocus, and specialized
stages such as burst photography or high dynamic range
(HDR) modes. We select these simple, essential ISP
stages because we believe they represent the common
functionality that may impact computer vision.

3.2. Pipeline Simulation Tool

Many computer vision algorithms rely on machine
learning. Deep learning techniques in particular require
vast bodies of training images. To make learning-based
vision work on our proposed imaging pipelines, we need
a way to generate labeled images that look as if they

were captured by the hypothetical hardware. Instead of
capturing this data from scratch, we develop a toolchain
that can convert existing image datasets.

The tool, called the Configurable & Reversible Imag-
ing Pipeline (CRIP), simulates an imaging pipeline in
“forward” operation and inverts the function in “reverse”
mode. CRIP takes as input a standard image file, runs
the inverse conversion to approximate a RAW image,
and then simulates a specific sensor/ISP configuration
to produce a final RGB image. The result recreates
the image’s color, resolution and quantization as if it
had been captured and processed by a specific image
sensor and ISP design. Figure 2 depicts the workflow
and shows the result of simulating a pipeline with only
gamma compression and demosaicing. Skipping color
transformations leads to a green hue in the output.

The inverse conversion uses an implementation of
Kim et al.’s reversible ISP model [27] augmented with
new stages for reverse denoising and demosaicing as
well as re-quantization. To restore noise to a denoised
image, we use Chehdi et al.’s sensor noise model [43].
To reverse the demosaicing process, we remove channel
data from the image according to the Bayer filter. The
resulting RAW image approximates the unprocessed
output of a camera sensor, but some aspects cannot be
reversed: namely, sensors typically digitize 12 bits per
pixel, but ordinary 8-bit images have lost this detail
after compression. For this reason, we only report
results for quantization levels with 8 bits or fewer.

CRIP implements the reverse stages from
Kim et al. [27], so its model linearization error
is the same as in that work: namely, less than 1%.
To quantify CRIP’s error when reconstructing RAW
images, we used it to convert a Macbeth color chart
photograph and compared the result with its original
RAW version. The average pixel error was 1.064%
and the PSNR was 28.81 dB. Qualitatively, our tool
produces simulated RAW images that are visually
indistinguishable from their real RAW counterparts.

CRIP’s reverse pipeline implementation can use any
camera model specified by Kim et al. [27], but for con-
sistency, this paper uses the Nikon D7000 pipeline. We
have implemented the entire tool in the domain-specific
language Halide [37] for speed. For example, CRIP can
convert the entire CIFAR-10 dataset [28] in one hour
on an 8-core machine. CRIP is available as open source:
https://github.com/cucapra/approx-vision

3.3. Benchmarks

Table 1 lists the computer vision algorithms we study.
It also shows the data sets used for evaluation and,
where applicable, training. Our suite consists of 5
CNN-based algorithms and 3 “classical,” non-learning

https://github.com/cucapra/approx-vision


Algorithm Dataset Vision Task

3 Deep LeNet [29] CIFAR-10 [28] Obj. Classification

20 Deep ResNet [21] CIFAR-10 Obj. Classification

44 Deep ResNet [21] CIFAR-10 Obj. Classification

Faster R-CNN [39] VOC-2007 [18] Object Detection

OpenFace [1] CASIA [46]
and LFW [24]

Face Identification

OpenCV Farneback [26] Middlebury [41] Optical Flow

OpenCV SGBM [26] Middlebury Stereo Matching

OpenMVG SfM [34] Strecha [42] Structure from
Motion

Table 1: Vision applications used in our evaluation.

implementations covering a range of vision tasks: ob-
ject classification, object detection, face identification,
optical flow, and structure from motion. For object
classification, we test 3 different implementations of
varying sophistication to examine the impact of neural
network depth on error tolerance.

For each experiment, we configure CRIP to apply a
chosen set of ISP stages and to simulate a given sensor
resolution and ADC quantization. For the CNNs, we
convert a training set and train the network starting
with pre-trained weights using the same learning rates
and hyperparameters specified in the original paper.
For all applications, we convert a test set and evaluate
performance using an algorithm-specific metric.

4. Sensitivity to ISP Stages

We next present an empirical analysis of our bench-
mark suite’s sensitivity to stages in the ISP. The goal is
to measure, for each algorithm, the relative difference
in task performance between running on the original
image data and running on data converted by CRIP.

Individual Stages: First, we examine the sensi-
tivity to each ISP stage in isolation. Testing the ex-
ponential space of all possible stage combinations is
intractable, so we start with two sets of experiments:
one that disables a single ISP stage and leaves the rest
of the pipeline intact (Figure 3a); and one that enables
a single ISP stage and disables the rest (Figure 3b).

In these experiments, gamut mapping and color trans-
formations have a minimal effect on all benchmarks.
The largest effects are on ResNet44, where classification
error increases from 6.3% in the baseline to 6.6% with-
out gamut mapping, and OpenMVG, where removing
the color transform stage increases RMSE from 0.408
to 0.445. This finding confirms that features for vision
are not highly sensitive to color.

There is a strong sensitivity, in contrast, to gamma
compression and demosaicing. The OpenMVG Struc-
ture from Motion (SfM) implementation fails entirely

when gamma compression is disabled: it was unable
to find sufficient features using either of its feature
extractors, SIFT and AKAZE. Meanwhile, removing
demosaicing worsens the error for Farneback optical
flow by nearly half, from 0.227 to 0.448. Both of these
classical (non-CNN) algorithms use hand-tuned feature
extractors, which do not take the Bayer pattern into ac-
count. The CIFAR-10 benchmarks (LeNet3, ResNet20,
ResNet44) use low-resolution data (32×32), which is
disproportionately affected by the removal of color chan-
nels in mosaiced data. While gamma-compressed data
follows a normal distribution, removing gamma com-
pression reverts the intensity scale to its natural log-
normal distribution, which makes features more difficult
to detect for both classical algorithms and CNNs.

Unlike the other applications, Stereo SGBM is sen-
sitive to noise. Adding sensor noise increases its mean
error from 0.245 to 0.425, an increase of over 70%. Also
unlike other applications, OpenFace counter-intuitively
performs better than the baseline when the simulated
pipeline omits gamut mapping or gamma compression.
OpenFace’s error is 8.65% on the original data and 7.9%
and 8.13%, respectively, when skipping those stages. We
attribute the difference to randomness inherent in the
training process. Across 10 training runs, OpenFace’s
baseline error rate varied from 8.22% to 10.35% with a
standard deviation of 0.57%.

Minimal Pipelines: Based on these results, we
study the effect of combining the most important stages:
demosaicing, gamma compression, and denoising. Fig-
ure 4 shows two configurations that enable only the first
two and all three of these stages. Accuracy for the min-
imal pipeline with only demosaicing and gamma com-
pression is similar to accuracy on the original data. The
largest impact, excluding SGBM, is ResNet44, whose
top-1 error increases only from 6.3% to 7.2%. Stereo
SGBM, however, is noise sensitive: without denoising,
its mean error is 0.33; with denoising, its error returns
to its baseline of 0.25. Overall, the CNNs are able to
rely on retraining themselves to adapt to changes in the
capture pipeline, while classical benchmarks are less
flexible and can depend on specific ISP stages.

We conclude that demosaicing and gamma compres-
sion are the only important stages for all applications
except for one, which also benefits from denoising. Our
goal in the next section is to show how to remove the
need for these two stages to allow vision mode to disable
the ISP entirely. For outliers like SGBM, selectively
enabling the ISP may still be worthwhile.

5. Image Sensor Design

Based on our experiments with limited ISP process-
ing, we propose a new image sensor design that can
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(a) Disabling a single ISP stage.
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(b) Enabling a single ISP stage and disabling the rest.

Figure 3: The impact on vision accuracy when adding and removing stages from the standard ISP pipeline. The
solid line shows the baseline error with all ISP stages enabled, and the dotted line shows the error when all ISP
stages are disabled. Asterisks denote aborted runs where no useful output was produced.
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Figure 4: Each algorithm’s vision error, normalized
to the original error on plain images, for two minimal
ISP pipelines. The demos+g.c. pipeline only enables
demosaicing and gamma compression; the +denoise
bars also add denoising. The all off column shows a
configuration with all stages disabled for reference.

operate in a low-power vision mode. We propose three
key features: adjustable resolution via selective pixel
readout and power gating; subsampling to approximate
ISP-based demosaicing; and nonlinear ADC quantiza-

tion to perform gamma compression. All three are
well-known sensor design techniques; we propose to use
them in an optional camera mode to replace the ISP’s
role in embedded vision applications.

Resolution: A primary factor in a sensor’s energy
consumption is the resolution. Frames are typically
read out in column-parallel fashion, where each column
of pixels passes through amplification and an ADC. Our
design can selectively read out a region of interest (ROI)
or subset of pixels, and save energy, by power-gating
column amplifiers and ADCs. Figure 5a depicts the
power-gating circuitry. The image sensor’s controller
unit can turn the additional transistor on or off to
control power for the amplifier and ADC in each column.

Subsampling: Section 4 finds that most vision
tasks depend on demosaicing for good accuracy. There
are many possible demosaicing techniques, but they are
typically costly algorithms optimized for perceived im-
age quality. We hypothesize that, for vision algorithms,
the nuances of advanced demosaicing techniques are
less important than the image format: raw images ex-
hibit the Bayer pattern, while demosaiced images use a
standard RGB format.



(a) Column circuitry. (b) Log/lin SAR ADC.

Figure 5: Our proposed camera sensor circuitry, in-
cluding power gating at the column level (a) and our
configurable logarithmic/linear SAR ADC (b).

We propose to modify the image sensor to achieve
the same format-change effect as demosaicing without
any signal processing. Specifically, our camera’s vision
mode subsamples the raw image to collapse each 2×2
block of Bayer-pattern pixels into a single RGB pixel.
Each such block contains one red pixel, two green pixels,
and one blue pixel; our technique drops one green pixel
and combines it with the remaining values to form the
three output channels. The design power-gates one of
the two green pixels interprets resulting red, green, and
blue values as a single pixel.

Nonlinear Quantization: In each sensor column,
an analog-to-digital (ADC) converter is responsible for
quantizing the analog output of the amplifier to a digital
representation. A typical linear ADC’s energy cost is
exponential in the number of bits in its output: an 12-
bit ADC costs roughly twice as much energy as a 11-bit
ADC. There is an opportunity to drastically reduce the
cost of image capture by reducing the number of bits.

As with resolution, ADC quantization is typically
fixed at design time. We propose to make the number
of bits configurable for a given imaging mode. Our
proposed image sensor uses successive-approximation
(SAR) ADCs, which support a variable bit depth con-
trolled by a clock and control signal [44].

ADC design can also provide a second opportunity:
to change the distribution of quantization levels. Nonlin-
ear quantization can be better for representing images
because their light intensities are not uniformly dis-
tributed: the probability distribution function for inten-
sities in natural images is log-normal [40]. To preserve
more information about the analog signal, SAR ADCs
can use quantization levels that map the intensities uni-
formly among digital values. (See the supplementary
material for a more complete discussion of intensity dis-
tributions.) We propose an ADC that uses logarithmic
quantization in vision mode. Figure 5b shows the ADC
design, which can switch between linear quantization
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Figure 6: Demosaicing on the ISP vs. subsampling in
the sensor. Error values are normalized to performance
on unmodified image data.

levels for photography mode and logarithmic quanti-
zation for vision mode. The design uses a separate
capacitor bank for each quantization scheme.

Logarithmic quantization lets the camera capture
the same amount of image information using fewer bits,
which is the same goal usually accomplished by the
gamma compression stage in the ISP. Therefore, we
eliminate the need for a separate ISP block to perform
gamma compression.

System Considerations: Our proposed vision
mode controls three sensor parameters: it enables sub-
sampling to produce RGB images; it allows reduced-
resolution readout; and it enables a lower-precision
logarithmic ADC configuration. The data is sent off-
chip directly to the application on the CPU, the GPU,
or dedicated vision hardware without being compressed.
This mode assumes that the vision task is running in
real time, so the image does not need to be saved.

In the traditional photography mode, we configure
the ADCs to be at high precision with linear quantiza-
tion levels. Then the image is sent to the separate ISP
chip to perform all the processing needed to generate
high quality images. These images are compressed us-
ing the JPEG codec on-chip and stored in memory for
access by the application processor.

6. Sensitivity to Sensor Parameters

We empirically measure the vision performance im-
pact of the design decisions in our camera’s vision mode.
We again use the CRIP tool to simulate specific sen-
sor configurations by converting image datasets and
evaluate the effects on the benchmarks in Table 1.

Approximate Demosaicing with Subsampling:
We first study subsampling as an alternative to true
demosaicing in the ISP. In this study, we omit the
benchmarks that work on CIFAR-10 images [28] be-
cause their resolution, 32×32, is unrealistically small
for a sensor, so subsampling beyond this size is not
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(a) Linear quantization.

��������
����

���

���

���

���

���

���

���

���

���
�����������

������
��������
��������
����
��������
���������
����
�������

(b) Logarithmic quantization.

Figure 7: Effect of quantization on vision accuracy in a
pipeline with only demosaicing enabled.

meaningful. Figure 6 compares data for “true” demo-
saicing, where CRIP has not reversed that stage, to
a version that simulates our subsampling instead. Re-
placing demosaicing with subsampling leads to a small
increase in vision error. Farneback optical flow sees the
largest error increase, from 0.332 to 0.375.

Quantization: Next, we study the impact of signal
quantization in the sensor’s ADCs. There are two pa-
rameters: the number of bits and the level distribution
(linear or logarithmic). Figure 7 shows our vision appli-
cations’ sensitivity to both bitwidth and distribution.
Both sweeps use an ISP pipeline with demosiacing but
without gamma compression to demonstrate that the
logarithmic ADC, like gamma compression, compresses
the data distribution.

The logarithmic ADC yields higher accuracy on
all benchmarks than the linear ADC with the same
bitwidth. Farneback optical flow’s sensitivity is partic-
ularly dramatic: using a linear ADC, its mean error is
0.54 and 0.65 for 8 and 2 bits, respectively; while with
a logarithmic ADC, the error drops to 0.33 and 0.38.

Switching to a logarithmic ADC also increases the
applications’ tolerance to smaller bitwidths. All appli-
cations exhibit minimal error increases down to 5 bits,
and some can even tolerate 4- or 3-bit quantization.
OpenMVG’s average RMSE only increases from 0.454
to 0.474 when reducing 8 bit logarithmic sampling to
5 bits, and ResNet20’s top-1 error increases from 8.2%
to 8.42%. To fit all of these applications, we propose a
5-bit logarithmic ADC design in vision mode.

Resolution: We next measure the impact of resolu-
tion adjustment using column power gating. Modern
image sensors use multi-megapixel resolutions, while
the input dimensions for most convolutional neural net-
works are often 256×256 or smaller. While changing
the input dimensions of the network itself may also be
an option, we focus here on downsampling images to
match the network’s published input size.

To test the downsampling technique, we concocted

a new higher-resolution dataset by selecting a subset of
ImageNet [12] which contains the CIFAR-10 [28] object
classes (∼15,000 images). These images are higher
resolution than the input resolution of networks trained
on CIFAR-10, so they let us experiment with image
downsampling.

We divide the new dataset into training and testing
datasets using an 80–20 balance and train the LeNet,
ResNet20, and ResNet44 networks from pre-trained
weights. For each experiment, we first downsample the
images to simulate sensor power gating. Then, after
demosaicing, we scale down the images the rest of the
way to 32×32 using OpenCV’s edge-aware scaling [26].
Without any subsampling, LeNet achieves 39.6% error,
ResNet20 26.34%, and ResNet44 24.50%. We then
simulated downsampling at ratios of 1⁄4, 1⁄16, and 1⁄64
resolution. Downsampling does increase vision error,
but the effect is small: the drop in accuracy from full
resolution to 1⁄4 resolution is approximately 1% (LeNet
40.9%, ResNet20 27.71%, ResNet44 26.5%). Full results
are included in this paper’s supplemental material.

7. Quantifying Power Savings

Here we estimate the potential power efficiency ben-
efits of our proposed vision mode as compared to a
traditional photography-oriented imaging pipeline. Our
analysis covers the sensor’s analog-to-digital conversion,
the sensor resolution, and the ISP chip.

Image Sensor ADCs: Roughly half of a cam-
era sensor’s power budget goes to readout, which is
dominated by the cost of analog-to-digital converters
(ADCs) [6]. While traditional sensors use 12-bit linear
ADCs, our proposal uses a 5-bit logarithmic ADC.

To compute the expected value of the energy required
for each ADC’s readout, we quantify the probability
and energy cost of each digital level that the ADC can
detect. The expected value for a single readout is:

E [ADC energy] =

2n∑
m=1

pmem

where n is the number of bits, 2n is the total number
of levels, m is the level index, pm is the probability of
level m occuring, and em is the energy cost of running
the ADC at level m.

To find pm for each level, we measure the distribution
of values from images in the CIFAR-10 dataset [28] in
raw data form converted by CRIP (Section 3.2). To find
a relative measure for em, we simulate the operation
of the successive approximation register (SAR) ADC
in charging and discharging the capacitors in its bank.
This capacitor simulation is a simple first-order model



of a SAR ADC’s power that ignores fixed overheads
such as control logic.

In our simulations, the 5-bit logarithmic ADC uses
99.95% less energy than the baseline 12-bit linear ADC.
As the ADCs in an image sensor account for 50% of the
energy budget [6], this means that the cheaper ADCs
save approximately half of the sensor’s energy cost.

Image Sensor Resolution: An image sensor’s
readout, I/O, and pixel array together make up roughly
95% of its power cost [6]. These costs are linearly related
to the sensor’s total resolution. As Section 5 describes,
our proposed image sensor uses selective readout cir-
cuitry to power off the pixel, amplifier, and ADC for
subsets of the sensor array. The lower-resolution results
can be appropriate for vision algorithms that have low-
resolution inputs (Section 6). Adjusting the proposed
sensor’s resolution parameter therefore reduces the bulk
of its power linearly with the pixel count.

ISP: While total power consumption numbers are
available for commercial and research ISP designs, we
are unaware of a published breakdown of power con-
sumed per stage. To approximate the relative cost for
each stage, we measured software implementations of
each using OpenCV 2.4.8 [26] and profile them when
processing a 4288×2848 image on an Intel Ivy Bridge
i7-3770K CPU. We report the number of dynamic in-
structions executed, the CPU cycle count, the number
of floating-point operations, and the L1 data cache
references in a table in our supplementary material.

While this software implementation does not directly
reflect hardware costs in a real ISP, we can draw gen-
eral conclusions about relative costs. The denoising
stage is by far the most expensive, requiring more
than two orders of magnitude more dynamic instruc-
tions. Denoising—here, non-local means [4]—involves
irregular and non-local references to surrounding pixels.
JPEG compression is also expensive; it uses a costly
discrete cosine transform for each macroblock.

Section 4 finds that most stages of the ISP are un-
necessary in vision mode, and Section 5 demonstrates
how two remaining stages—gamma compression and
demosaicing—can be approximated using in-sensor tech-
niques. The JPEG compression stage is also unneces-
sary in computer vision mode: because images do not
need to be stored, they do not need to be compressed for
efficiency. Therefore, the pipeline can fully bypass the
ISP when in vision mode. Power-gating the integrated
circuit would save all of the energy needed to run it.

Total Power Savings: The two components of an
imaging pipeline, the sensor and the ISP, have com-
parable total power costs. For sensors, typical power
costs range from 137.1 mW for a security camera to
338.6 mW for a mobile device camera [31]. Industry

ISPs can range from 130 mW to 185 mW when pro-
cessing 1.2 MP at 45 fps [36], while Hegarty et al. [22]
simulated an automatically synthesized ISP which con-
sumes 250 mW when processing 1080p video at 60 fps.
This power consumption is comparable to recent CNN
ASICs such as TrueNorth at 204 mW [17] and EIE at
590 mW [19].

In vision mode, the proposed image sensor uses half
as much energy as a traditional sensor by switching to a
5-bit logarithmic ADC. The ISP can be disabled entirely.
Because the two components contribute roughly equal
parts to the pipeline’s power, the entire vision mode
saves around 75% of a traditional pipeline’s energy. If
resolution can be reduced, energy savings can be higher.

This first-order energy analysis does not include over-
heads for power gating, additional muxing, or off-chip
communication. We plan to measure complete imple-
mentations in future work.

8. Discussion

We advocate for adding a vision mode to the imaging
pipelines in mobile devices. We show that design choices
in the sensor’s circuitry can obviate the need for an ISP
when supplying a computer vision algorithm.

This paper uses an empirical approach to validate
our design for a vision-mode imaging pipeline. This
limits our conclusions to pertain to specific algorithms
and specific datasets. Follow-on work should take a
theoretical approach to model the statistical effect of
each ISP stage. Future work should also complete
a detailed hardware design for the proposed sensor
modifications. This paper uses a first-order energy
evaluation that does not quantify overheads; a full
design would contend with the area costs of additional
components and the need to preserve pixel pitch in the
column architecture. Finally, the proposed vision mode
consists of conservative changes to a traditional camera
design and no changes to vision algorithms themselves.
This basic framework suggests future work on deeper
co-design between camera systems and computer vision
algorithms. By modifying the abstraction boundary
between hardware and software, co-designed systems
can make sophisticated vision feasible in energy-limited
mobile devices.
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